Gintonin Attenuates D-Galactose-Induced Hippocampal Senescence by Improving Long-Term Hippocampal Potentiation, Neurogenesis, and Cognitive Functions

Sung Min Nam, Hongik Hwang, Misun Seo, Byung Joon Chang, Hyeon Joong Kim, Sun Hye Choi, Hyewhon Rhim, Hyoung Chun Kim, Ik Hyun Cho, Seung Yeol Nah

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


Background: Ginseng has been used to improve brain function and increase longevity. However, little is known about the ingredients of ginseng and molecular mechanisms of its anti-brain aging effects. Gintonin is a novel exogenous ginseng-derived lysophosphatidic acid (LPA) receptor ligand; LPA and LPA1 receptors are involved in adult hippocampal neurogenesis. D-galactose (D-gal) is used to induce brain -aging in animal models because long-term treatment with D-gal facilitates hippocampal aging in experimental adult animals by decreasing hippocampal neurogenesis and inducing learning and memory dysfunction. Objective: To investigate the protective effects of gintonin on D-gal-induced hippocampal senescence, impairment of long-term potentiation (LTP), and memory dysfunction. Methods: Brain hippocampal aging was induced by D-gal administration (150 mg/kg/day, s.c.; 10 weeks). From the 7th week, gintonin (50 or 100 mg/kg/day, per os) was co-administered with D-gal for 4 weeks. We performed histological analyses, LTP measurements, and object location test. Results: Co-administration of gintonin ameliorated D-gal-induced reductions in hippocampal Ki67-immunoreactive proliferating cells, doublecortin-immunoreactive neuroblasts, 5-bromo-2'-deoxyuridine-incorporating NeuN-immunoreactive mature neurons, and LPA1 receptor expression. Co-administration of gintonin in D-gal-treated mice increased the expression of phosphorylated cyclic adenosine monophosphate response element binding protein in the hippocampal dentate gyrus. In addition, co-administration of gintonin in D-gal-treated mice enhanced LTP and restored the cognitive functions compared with those in mice treated with D-gal only. Conclusion: These results show that gintonin administration restores D-gal-induced memory deficits by enhancing hippocampal LPA1 receptor expression, LTP, and neurogenesis. Finally, the present study shows that gintonin exerts anti-brain aging effects that are responsible for alleviating brain aging-related dysfunction.

Original languageEnglish
Pages (from-to)562-575
Number of pages14
Issue number6
StatePublished - 1 Oct 2018


  • Anti-brain aging
  • Brain senescence
  • D-galactose
  • Ginseng
  • Gintonin
  • Hippocampus
  • Neurogenesis


Dive into the research topics of 'Gintonin Attenuates D-Galactose-Induced Hippocampal Senescence by Improving Long-Term Hippocampal Potentiation, Neurogenesis, and Cognitive Functions'. Together they form a unique fingerprint.

Cite this