Graphene oxide-manganese ferrite (GO-MnFe2O4) nanocomposite: One-pot hydrothermal synthesis and its use for adsorptive removal of Pb2+ ions from aqueous medium

Monu Verma, Ashwani Kumar, Krishna Pal Singh, Ravi Kumar, Vinod Kumar, Chandra Mohan Srivastava, Varun Rawat, Gyandeshwar Rao, Sujata Kumari, Pratibha Sharma, Hyunook Kim

Research output: Contribution to journalArticlepeer-review

68 Scopus citations

Abstract

Herein, we showed that the graphene oxide with manganese ferrite (GO-MnFe2O4) possess great adsorption properties for the selective Pb2+ ions removal from the aqueous medium. Nanocomposite adsorbent was developed by one-pot hydrothermal method, using graphene oxide as a supporting material to minimize the aggregation of MnFe2O4. Also, GO possesses important role in the adsorption mechanism of Pb2+ through electrostatic/ionic interactions. The characterizations such as FT-IR, XPS, P-XRD, FE-SEM, and BET of the synthesized nanocomposite were carried out to assess the different properties such as functionalities, crystallinity, morphology, and surface area value, respectively. Thereafter, the adsorption performance of GO-MnFe2O4 nanocomposite was tested for the Pb2+ at various adsorption parameters including to contact time, solution pH, adsorbent dose, and concentration of initial Pb2+ in order to measure the optimum adsorption condition. Kinetic experiments suggest that the equilibrium attained in 30 min and followed a pseudo-second-order kinetic model. Adsorption isotherm model followed to Langmuir isotherms and gives a maximum adsorption capacity of 621.11 mg/g. The reusability tests exhibited good durability and good efficiency for repeated Pb2+ adsorptions with GO-MnFe2O4 nanocomposite. These results demonstrated that the GO-MnFe2O4 nanocomposite may be an attractive adsorbent having low-cost for the effectively Pb+2 removal of from the polluted water.

Original languageEnglish
Article number113769
JournalJournal of Molecular Liquids
Volume315
DOIs
StatePublished - 1 Oct 2020

Keywords

  • Adsorption kinetics
  • Heavy metals
  • Isotherm
  • Nanocomposite
  • Water treatment

Fingerprint

Dive into the research topics of 'Graphene oxide-manganese ferrite (GO-MnFe2O4) nanocomposite: One-pot hydrothermal synthesis and its use for adsorptive removal of Pb2+ ions from aqueous medium'. Together they form a unique fingerprint.

Cite this