TY - JOUR
T1 - Ground subsidence observation of solid waste landfill park using multi-temporal radar interferometry
AU - Baek, Won Kyung
AU - Jung, Hyung Sup
AU - Jo, Min Jeong
AU - Lee, Won Jin
AU - Zhang, Lei
N1 - Publisher Copyright:
© 2018, © 2018 The Institute of Urban Sciences.
PY - 2019/7/3
Y1 - 2019/7/3
N2 - Land subsidence on landfill parks needs to be consistently and periodically measured because the landfill areas tend to subside unexpectedly. Although in-situ measurements have been adopted in general, these have a number of limitations of spatial and temporal resolutions because of the high cost. However, the use of interferometric synthetic aperture radar (InSAR) can overcome these disadvantages. In this study, we carried out two experiments using the InSAR method. We then compared the interferometric coherence between ALOS PALSAR and TerraSAR-X data and measured the ground subsidence using multi-temporal TerraSAR-X data acquired from ascending and descending paths. The mean coherences from the ALOS PALSAR and TerraSAR-X interferograms were 0.26 and 0.54, respectively. The coherence from TerraSAR-X was nearly 2 times higher than that of ALOS PALSAR, despite its shorter wavelength of radar signal. These results showed that the data with the shorter temporal baseline is appropriate to monitor the ground subsidence on landfill park areas. As a result of measuring surface deformation, the mean line-of-sight (LOS) deformation rates estimated from the small baseline subset (SBAS) method were −2.4 and −3.2 cm/year for the ascending and descending data of TerraSAR-X, respectively. Also, the mean deformation rate in the vertical and east–west directions were −5.7 and −1.7 cm/year, respectively. The root mean square error (RMSE) of InSAR measurements by comparing with the in-situ measurements was about 1.2 cm/year and the coefficient of determination ((Formula presented.)) was about 0.97. These results indicated good agreements between the InSAR measurements and the in-situ measurements.
AB - Land subsidence on landfill parks needs to be consistently and periodically measured because the landfill areas tend to subside unexpectedly. Although in-situ measurements have been adopted in general, these have a number of limitations of spatial and temporal resolutions because of the high cost. However, the use of interferometric synthetic aperture radar (InSAR) can overcome these disadvantages. In this study, we carried out two experiments using the InSAR method. We then compared the interferometric coherence between ALOS PALSAR and TerraSAR-X data and measured the ground subsidence using multi-temporal TerraSAR-X data acquired from ascending and descending paths. The mean coherences from the ALOS PALSAR and TerraSAR-X interferograms were 0.26 and 0.54, respectively. The coherence from TerraSAR-X was nearly 2 times higher than that of ALOS PALSAR, despite its shorter wavelength of radar signal. These results showed that the data with the shorter temporal baseline is appropriate to monitor the ground subsidence on landfill park areas. As a result of measuring surface deformation, the mean line-of-sight (LOS) deformation rates estimated from the small baseline subset (SBAS) method were −2.4 and −3.2 cm/year for the ascending and descending data of TerraSAR-X, respectively. Also, the mean deformation rate in the vertical and east–west directions were −5.7 and −1.7 cm/year, respectively. The root mean square error (RMSE) of InSAR measurements by comparing with the in-situ measurements was about 1.2 cm/year and the coefficient of determination ((Formula presented.)) was about 0.97. These results indicated good agreements between the InSAR measurements and the in-situ measurements.
KW - SAR interferometry (InSAR)
KW - Synthetic aperture radar (SAR)
KW - ground subsidence
KW - interferometric coherence
KW - landfill
KW - multi-temporal SAR interferometry (MTInSAR)
UR - http://www.scopus.com/inward/record.url?scp=85046641439&partnerID=8YFLogxK
U2 - 10.1080/12265934.2018.1468275
DO - 10.1080/12265934.2018.1468275
M3 - Article
AN - SCOPUS:85046641439
SN - 1226-5934
VL - 23
SP - 406
EP - 421
JO - International Journal of Urban Sciences
JF - International Journal of Urban Sciences
IS - 3
ER -