Heat transfer in fast linear annealing for direct bonding of SOI wafer pairs

Youngcheol Joo, Oh Sung Song

Research output: Contribution to journalArticlepeer-review

Abstract

A novel silicon-on-insulator (SOI) manufacturing method, the fast linear annealing (FLA) method, is proposed. In the fast linear annealing method, a halogen lamp moves with a constant speed above a silicon wafer pair prebonded by the hydrogen interaction. In order to optimize the processing parameters such as the initial heat treatment time and the moving speed of the halogen lamp, bonding strengths were measured when the moving speed varies in the range of 0.05-0.5 mm · s-1. The temperature distribution of SOI is analyzed numerically by using a finite difference method. The SOI is modeled two-dimensionally, and the alternate direction implicit (ADI) technique is used for the calculation of the temperature. The calculation results show that the SOI reaches a steady-state temperature distribution in an elapsed time of 380 s of halogen lamp irradiation. The maximum temperature of SOI does not vary significantly as the moving speed of the halogen lamp increases. These results agree with the measurement results, which show that the bonding strength from the high-speed anneal (0.5 mm · s-1) was of similar strength to that from the slow speed (0.05 mm · s-1) process.

Original languageEnglish
Pages (from-to)314-331
Number of pages18
JournalInternational Journal of Thermophysics
Volume27
Issue number1
DOIs
StatePublished - Jan 2006

Keywords

  • Alternate direction implicit (ADI) method
  • Direct bonding
  • Fast linear annealing
  • Finite difference method
  • Silicon-on-insulator (SOI) wafer pairs

Fingerprint

Dive into the research topics of 'Heat transfer in fast linear annealing for direct bonding of SOI wafer pairs'. Together they form a unique fingerprint.

Cite this