TY - GEN
T1 - Hierarchical Memory Matching Network for Video Object Segmentation
AU - Seong, Hongje
AU - Oh, Seoung Wug
AU - Lee, Joon Young
AU - Lee, Seongwon
AU - Lee, Suhyeon
AU - Kim, Euntai
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - We present Hierarchical Memory Matching Network (HMMN) for semi-supervised video object segmentation. Based on a recent memory-based method [33], we propose two advanced memory read modules that enable us to perform memory reading in multiple scales while exploiting temporal smoothness. We first propose a kernel guided memory matching module that replaces the non-local dense memory read, commonly adopted in previous memory-based methods. The module imposes the temporal smoothness constraint in the memory read, leading to accurate memory retrieval. More importantly, we introduce a hierarchical memory matching scheme and propose a top-k guided memory matching module in which memory read on a fine-scale is guided by that on a coarse-scale. With the module, we perform memory read in multiple scales efficiently and leverage both high-level semantic and low-level fine-grained memory features to predict detailed object masks. Our network achieves state-of-the-art performance on the validation sets of DAVIS 2016/2017 (90.8% and 84.7%) and YouTube-VOS 2018/2019 (82.6% and 82.5%), and test-dev set of DAVIS 2017 (78.6%). The source code and model are available online: https://github.com/Hongje/HMMN.
AB - We present Hierarchical Memory Matching Network (HMMN) for semi-supervised video object segmentation. Based on a recent memory-based method [33], we propose two advanced memory read modules that enable us to perform memory reading in multiple scales while exploiting temporal smoothness. We first propose a kernel guided memory matching module that replaces the non-local dense memory read, commonly adopted in previous memory-based methods. The module imposes the temporal smoothness constraint in the memory read, leading to accurate memory retrieval. More importantly, we introduce a hierarchical memory matching scheme and propose a top-k guided memory matching module in which memory read on a fine-scale is guided by that on a coarse-scale. With the module, we perform memory read in multiple scales efficiently and leverage both high-level semantic and low-level fine-grained memory features to predict detailed object masks. Our network achieves state-of-the-art performance on the validation sets of DAVIS 2016/2017 (90.8% and 84.7%) and YouTube-VOS 2018/2019 (82.6% and 82.5%), and test-dev set of DAVIS 2017 (78.6%). The source code and model are available online: https://github.com/Hongje/HMMN.
UR - https://www.scopus.com/pages/publications/85127623079
U2 - 10.1109/ICCV48922.2021.01265
DO - 10.1109/ICCV48922.2021.01265
M3 - Conference contribution
AN - SCOPUS:85127623079
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 12869
EP - 12878
BT - Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Y2 - 11 October 2021 through 17 October 2021
ER -