TY - GEN
T1 - High accurate affordable car navigation using built-in sensory data and images acquired from a front view camera
AU - Kim, Hojun
AU - Choi, Kyoungah
AU - Lee, Impyeong
PY - 2014
Y1 - 2014
N2 - Nowadays cars are equipped with various built-in sensors such as speedometers, odometers, accelerometers, and gyros for safety and maintenance. Also, front view images can be economically acquired by a low-cost camera available in smartphones or black boxes. The combination of the built-in sensory data and the images can be an effective complement to a GPS based navigation. Therefore, we propose a car navigation framework to determine car position and attitude using the built-in sensory data such as a speed, angular rate and the images from a front view camera. The method consists of three steps, 1) dead reckoning using the velocity and yaw rate provided in real-time, 2) image georeferencing based on a sequential bundle adjustment using the dead reckoning results and 3) final estimation using a Kalman filter with the georeferencing results. The experimental results show that the proposed method can provide the positions with a reasonable accuracy level, which can be meaningful to complement a traditional GPS based navigation with a low cost.
AB - Nowadays cars are equipped with various built-in sensors such as speedometers, odometers, accelerometers, and gyros for safety and maintenance. Also, front view images can be economically acquired by a low-cost camera available in smartphones or black boxes. The combination of the built-in sensory data and the images can be an effective complement to a GPS based navigation. Therefore, we propose a car navigation framework to determine car position and attitude using the built-in sensory data such as a speed, angular rate and the images from a front view camera. The method consists of three steps, 1) dead reckoning using the velocity and yaw rate provided in real-time, 2) image georeferencing based on a sequential bundle adjustment using the dead reckoning results and 3) final estimation using a Kalman filter with the georeferencing results. The experimental results show that the proposed method can provide the positions with a reasonable accuracy level, which can be meaningful to complement a traditional GPS based navigation with a low cost.
UR - http://www.scopus.com/inward/record.url?scp=84905393736&partnerID=8YFLogxK
U2 - 10.1109/IVS.2014.6856495
DO - 10.1109/IVS.2014.6856495
M3 - Conference contribution
AN - SCOPUS:84905393736
SN - 9781479936380
T3 - IEEE Intelligent Vehicles Symposium, Proceedings
SP - 808
EP - 813
BT - 2014 IEEE Intelligent Vehicles Symposium, IV 2004 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 25th IEEE Intelligent Vehicles Symposium, IV 2014
Y2 - 8 June 2014 through 11 June 2014
ER -