Abstract
To avoid the problem of reduced graphene oxide (rGO) restacking in aqueous solution, the preparation of light-responsive poly(N-isopropylacrylamide) incorporating rGO (PNIPAm/rGO) was achieved by the chemical reduction of GO dispersed in the hydrogel matrix. Due to the enhanced photothermal efficiency of the rGO, the prepared PNIPAm/rGO underwent large volume reductions in response to irradiation by visible light of modest intensity. With respect to potential applications, bilayer-type photo-actuators comprising a PNIPAm/rGO active layer and poly(acrylamide) passive layer were fabricated; these achieved a full bending motion upon visible-light exposure. Adjusting the swelling ratio of each layer in the initial state yielded bidirectional photo-actuators that showed the active motion of turning inside out. Furthermore, we demonstrated that the fabricated actuation system would exhibit controlled bending motion in response to solar radiation.
Original language | English |
---|---|
Article number | 20921 |
Journal | Scientific Reports |
Volume | 6 |
DOIs | |
State | Published - 11 Feb 2016 |