Abstract
An effective way to improve the functionalities and stabilities of metal-organic frameworks (MOFs) is developed by employing exfoliated metal oxide 2D nanosheets as matrix for immobilization. Crystal growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals on the surface of layered titanate nanosheets yields intimately coupled nanohybrids of ZIF-8-layered titanate. The resulting nanohybrids show much greater surface areas and larger pore volumes than do the pristine ZIF-8, leading to the remarkable improvement of the CO2 adsorption ability of MOF upon hybridization. Of prime importance is that the thermal- and hydrostabilities of ZIF-8 are significantly enhanced by a strong chemical interaction with the robust titanate nanosheet. A strong interfacial interaction between ZIF-8 and the layered titanate is verified by molecular mechanics simulations and spectroscopic analysis. The universal applicability of the present strategy for the coupling of MOFs and metal oxide nanosheets is substantiated by the stabilization of Ti-MOF-NH2 via the immobilization on exfoliated V2O5 nanosheets. The present study underscores that hybridization with metal oxide 2D nanosheets provides an efficient and universal synthetic route to novel MOF-based hybrid materials with enhanced gas adsorptivity and stability.
Original language | English |
---|---|
Pages (from-to) | 1028-1035 |
Number of pages | 8 |
Journal | Chemistry of Materials |
Volume | 29 |
Issue number | 3 |
DOIs | |
State | Published - 14 Feb 2017 |