Improved Performance in n-Type Organic Field-Effect Transistors via Polyelectrolyte-Mediated Interfacial Doping

Yu Jung Park, Myoung Joo Cha, Yung Jin Yoon, Shinuk Cho, Jin Young Kim, Jung Hwa Seo, Bright Walker

Research output: Contribution to journalArticlepeer-review

24 Scopus citations


To enhance electron injection in n-type organic field-effect transistors (OFETs), nonconjugated polyelectrolyte (NPE) layers are interposed between a [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) layer and Au electrodes. A series of NPEs based on an ethoxylated polyethylenimine backbone with various counterions, including Cl, Br, and I, improve electron mobilities up to ≈10−2 cm2 V−1 s−1 and yield on–off ratios (Ion/Ioff) of 105 in PCBM OFETs. Ultraviolet photoelectron spectroscopy reveals that all of the NPEs lead to reduced electron injection barriers (φe) at the NPE/metal interface; this reduction in φe is consistent with dipole formation or n-type doping at the electrode interface. Absorption measurements of PCBM films treated with NPEs are consistent with n-doping of the PCBM. Regardless of the type of anion, thick NPE layers lead to high conductivity in the films independent of gate bias, whereas thin NPE layers lead to dramatically improved electron injection and performance. These results demonstrate that thin polyelectrolyte layers can be used to achieve controlled interfacial doping in organic semiconductors. Furthermore, this study provides valuable information about the function of NPEs, which may be exploited to improve device performance and to design new materials for future use in optoelectronic devices.

Original languageEnglish
Article number1700184
JournalAdvanced Electronic Materials
Issue number10
StatePublished - Oct 2017


  • OFET
  • PCBM
  • doping
  • polaron
  • polyelectrolyte


Dive into the research topics of 'Improved Performance in n-Type Organic Field-Effect Transistors via Polyelectrolyte-Mediated Interfacial Doping'. Together they form a unique fingerprint.

Cite this