Improved YOLOv5: Efficient Object Detection Using Drone Images under Various Conditions

Hyun Ki Jung, Gi Sang Choi

Research output: Contribution to journalArticlepeer-review

105 Scopus citations

Abstract

With the recent development of drone technology, object detection technology is emerging, and these technologies can also be applied to illegal immigrants, industrial and natural disasters, and missing people and objects. In this paper, we would like to explore ways to increase object detection performance in these situations. Photography was conducted in an environment where it was confusing to detect an object. The experimental data were based on photographs that created various environmental conditions, such as changes in the altitude of the drone, when there was no light, and taking pictures in various conditions. All the data used in the experiment were taken with F11 4K PRO drone and VisDrone dataset. In this study, we propose an improved performance of the original YOLOv5 model. We applied the obtained data to each model: the original YOLOv5 model and the improved YOLOv5_Ours model, to calculate the key indicators. The main indicators are precision, recall, F-1 score, and mAP (0.5), and the YOLOv5_Ours values of mAP (0.5) and function loss were improved by comparing it with the original YOLOv5 model. Finally, the conclusion was drawn based on the data comparing the original YOLOv5 model and the improved YOLOv5_Ours model. As a result of the analysis, we were able to arrive at a conclusion on the best model of object detection under various conditions.

Original languageEnglish
Article number7255
JournalApplied Sciences (Switzerland)
Volume12
Issue number14
DOIs
StatePublished - Jul 2022

Keywords

  • YOLOv5
  • drone images
  • object detection

Fingerprint

Dive into the research topics of 'Improved YOLOv5: Efficient Object Detection Using Drone Images under Various Conditions'. Together they form a unique fingerprint.

Cite this