TY - JOUR
T1 - Influence of Te vacancies on the thermoelectric properties of n-type Cu0.008Bi2Te2.7-xSe0.3
AU - Yang, Yerim
AU - Kim, Tae Wan
AU - Hong, Seokown
AU - An, Jiwoo
AU - Kim, Sang Il
N1 - Publisher Copyright:
Copyright © The Korean Institute of Metals and Materials
PY - 2020/10
Y1 - 2020/10
N2 - In this study, we report the influence of Te vacancy formation on the thermoelectric properties of n-type Cu0.008Bi2Te2.7Se0.3 alloys, including their electronic and thermal transport properties. Te-deficient Cu0.008Bi2Te2.7-xSe0.3 (x = 0, 0.005, 0.01 and 0.02) samples were systematically synthesized and characterized. Regarding electronic transport properties, carrier concentration was increased with Te vacancies, while carrier mobility was maintained. As a result, the electrical conductivity significantly increased while the Seebeck coefficient reduced moderately, thus, the power factor was enhanced from 3.04 mW/mK2 (pristine) to 3.22 mW/mK2 (x = 0.02) at 300 K. Further analysis based on a single parabolic band model revealed that the weighted mobility of the conduction band increased, which is favorable for electron transport, as Te vacancies were generated. Regarding thermal transport properties, lattice thermal conductivity decreased with Te vacancies due to additional point defect phonon scattering, however, total thermal conductivity increased due to larger electronic contribution as Te vacancies increased. Analysis using the Debye-Callaway model suggests that the phonon scattering by the Te vacancies is as efficient as the substitution point defect scattering. Consequently, the thermoelectric figure of merit zT increased at all temperatures for x = 0.005 and 0.01. The maximum zT of 0.95 was achieved for Te-deficient Cu0.008Bi2Te2.69Se0.3 (x = 0.01) at 400 K.
AB - In this study, we report the influence of Te vacancy formation on the thermoelectric properties of n-type Cu0.008Bi2Te2.7Se0.3 alloys, including their electronic and thermal transport properties. Te-deficient Cu0.008Bi2Te2.7-xSe0.3 (x = 0, 0.005, 0.01 and 0.02) samples were systematically synthesized and characterized. Regarding electronic transport properties, carrier concentration was increased with Te vacancies, while carrier mobility was maintained. As a result, the electrical conductivity significantly increased while the Seebeck coefficient reduced moderately, thus, the power factor was enhanced from 3.04 mW/mK2 (pristine) to 3.22 mW/mK2 (x = 0.02) at 300 K. Further analysis based on a single parabolic band model revealed that the weighted mobility of the conduction band increased, which is favorable for electron transport, as Te vacancies were generated. Regarding thermal transport properties, lattice thermal conductivity decreased with Te vacancies due to additional point defect phonon scattering, however, total thermal conductivity increased due to larger electronic contribution as Te vacancies increased. Analysis using the Debye-Callaway model suggests that the phonon scattering by the Te vacancies is as efficient as the substitution point defect scattering. Consequently, the thermoelectric figure of merit zT increased at all temperatures for x = 0.005 and 0.01. The maximum zT of 0.95 was achieved for Te-deficient Cu0.008Bi2Te2.69Se0.3 (x = 0.01) at 400 K.
KW - BiTe
KW - Phonon scattering
KW - Thermoelectric
KW - Vacancy
UR - http://www.scopus.com/inward/record.url?scp=85092786522&partnerID=8YFLogxK
U2 - 10.3365/KJMM.2020.58.10.721
DO - 10.3365/KJMM.2020.58.10.721
M3 - Article
AN - SCOPUS:85092786522
SN - 1738-8228
VL - 58
SP - 721
EP - 727
JO - Journal of Korean Institute of Metals and Materials
JF - Journal of Korean Institute of Metals and Materials
IS - 10
ER -