@inproceedings{3d49446bb64e460d9b4e03605d9fd7df,
title = "Integrated cable vibration control system using wireless sensors",
abstract = "As the number of long-span bridges is increasing worldwide, maintaining their structural integrity and safety become an important issue. Because the stay cable is a critical member in most long-span bridges and vulnerable to wind-induced vibrations, vibration mitigation has been of interest both in academia and practice. While active and semi-active control schemes are known to be quite effective in vibration reduction compared to the passive control, requirements for equipment including data acquisition, control devices, and power supply prevent a widespread adoption in real-world applications. This study develops an integrated system for vibration control of stay-cables using wireless sensors implementing a semi-active control. Arduino, a low-cost single board system, is employed with a MEMS digital accelerometer and a Zigbee wireless communication module to build the wireless sensor. The magneto-rheological (MR) damper is selected as a damping device, controlled by an optimal control algorithm implemented on the Arduino sensing system. The developed integrated system is tested in a laboratory environment using a cable to demonstrate the effectiveness of the proposed system on vibration reduction. The proposed system is shown to reduce the vibration of stay-cables with low operating power effectively.",
keywords = "Arduino, Cable vibration, Control algorithm, Magneto-rheological (MR) damper, Stay-cables",
author = "Seunghoo Jeong and Soojin Cho and Sim, {Sung Han}",
note = "Publisher Copyright: {\textcopyright} 2017 SPIE.; Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017 ; Conference date: 26-03-2017 Through 29-03-2017",
year = "2017",
doi = "10.1117/12.2258738",
language = "English",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
publisher = "SPIE",
editor = "Lynch, {Jerome P.}",
booktitle = "Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017",
address = "United States",
}