TY - JOUR
T1 - Integrated phycoremediation and ultrasonic-irradiation treatment (iPUT) for the enhanced removal of pharmaceutical contaminants in wastewater
AU - Kurade, Mayur B.
AU - Mustafa, Ghulam
AU - Zahid, Muhammad Tariq
AU - Awasthi, Mukesh Kumar
AU - Chakankar, Mital
AU - Pollmann, Katrin
AU - Khan, Moonis Ali
AU - Park, Young Kwon
AU - Chang, Soon Woong
AU - Chung, Woojin
AU - Jeon, Byong Hun
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Ultrasonication using low frequencies of sound can increase cell organogenesis, which is beneficial for various industrial applications. This study demonstrates a novel approach of integrated phycoremediation and ultrasonication-irradiation treatment (iPUT) used for improving the degradation of sulfonamide antibiotics via a cumulative effect of combined treatments. Variable ultrasonication treatment (UT) (20 %-2 min to 40 %-10 min) was given to a model microalga, Chlamydomonas mexicana in two ways, 1) single ultrasonic treatment (SUT) and 2) multiple-intermittent ultrasonic treatments (IUT). The microalgal growth was slightly affected by SUT, while it significantly inhibited by IUT. The removal of sulfacetamide and sulfapyridine was significantly improved by >1.7-fold and >1.95-fold at 20 % of SUT and IUT treatment, respectively, compared to control. In the case of sulfamethazine, the SUT showed maximum removal (33.5 %) at 20 %, whereas IUT could achieve 27.5 % removal at the same ultrasonication conditions compared to 9.5 % removal in control. The IUT accelerated the degradation of sulfamethoxazole and sulfadimethoxine more than SUT showing a 9- fold and 12- fold increase in the removal of sulfamethoxazole and sulfadimethoxine with 20 % and 40 % treatments, respectively. The changes in microalgal cell morphology due to ultrasonication treatment were the main cause of enforced uptake and subsequent degradation of these ECs.
AB - Ultrasonication using low frequencies of sound can increase cell organogenesis, which is beneficial for various industrial applications. This study demonstrates a novel approach of integrated phycoremediation and ultrasonication-irradiation treatment (iPUT) used for improving the degradation of sulfonamide antibiotics via a cumulative effect of combined treatments. Variable ultrasonication treatment (UT) (20 %-2 min to 40 %-10 min) was given to a model microalga, Chlamydomonas mexicana in two ways, 1) single ultrasonic treatment (SUT) and 2) multiple-intermittent ultrasonic treatments (IUT). The microalgal growth was slightly affected by SUT, while it significantly inhibited by IUT. The removal of sulfacetamide and sulfapyridine was significantly improved by >1.7-fold and >1.95-fold at 20 % of SUT and IUT treatment, respectively, compared to control. In the case of sulfamethazine, the SUT showed maximum removal (33.5 %) at 20 %, whereas IUT could achieve 27.5 % removal at the same ultrasonication conditions compared to 9.5 % removal in control. The IUT accelerated the degradation of sulfamethoxazole and sulfadimethoxine more than SUT showing a 9- fold and 12- fold increase in the removal of sulfamethoxazole and sulfadimethoxine with 20 % and 40 % treatments, respectively. The changes in microalgal cell morphology due to ultrasonication treatment were the main cause of enforced uptake and subsequent degradation of these ECs.
KW - Biodegradation
KW - Integrated bioremediation
KW - Pharmaceutical contaminants
KW - Phycoremediation
KW - Sulfonamide antibiotics
UR - http://www.scopus.com/inward/record.url?scp=85145548274&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2022.140884
DO - 10.1016/j.cej.2022.140884
M3 - Article
AN - SCOPUS:85145548274
SN - 1385-8947
VL - 455
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 140884
ER -