Irreducible modules over Khovanov-Lauda-Rouquier algebras of type An and semistandard tableaux

Seok Jin Kang, Euiyong Park

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Using combinatorics of Young tableaux, we give an explicit construction of irreducible graded modules over Khovanov-Lauda-Rouquier algebras R and their cyclotomic quotients Rλ of type An. Our construction is compatible with crystal structure. Let B(λ) and B(λ) be the Uq(sln+1)-crystal consisting of marginally large tableaux and semistandard tableaux of shape λ, respectively. On the other hand, let B(λ) and B(λ) be the Uq(sln+1)-crystals consisting of isomorphism classes of irreducible graded R-modules and Rλ-modules, respectively. We show that there exist explicit crystal isomorphisms φ∞:B(∞)→~B(λ) and φ∞:B(λ)→~B(λ).

Original languageEnglish
Pages (from-to)223-251
Number of pages29
JournalJournal of Algebra
Volume339
Issue number1
DOIs
StatePublished - 1 Aug 2011

Keywords

  • Crystals
  • Khovanov-Lauda-Rouquier algebras
  • Young tableaux

Fingerprint

Dive into the research topics of 'Irreducible modules over Khovanov-Lauda-Rouquier algebras of type An and semistandard tableaux'. Together they form a unique fingerprint.

Cite this