Kernel multimodal discriminant analysis for speaker verification

Min Seok Kim, Il Ho Yang, Ha Jin Yu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

In this paper, we propose a robust speaker feature extraction method using kernel multimodal Fisher discriminant analysis (kernel MFDA). Kernel MFDA has been designed to have the characteristics both of kernel principal component analysis (kernel PCA) and kernel Fisher discriminant analysis (kernel FDA). Therefore, the feature vectors extracted by kernel MFDA are denoised as well as discriminated. For evaluation, we compare our proposed method with principal component analysis (PCA) and kernel PCA on the speaker verification systems.

Original languageEnglish
Title of host publication2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4498-4501
Number of pages4
ISBN (Print)9781424442966
DOIs
StatePublished - 2010
Event2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010 - Dallas, TX, United States
Duration: 14 Mar 201019 Mar 2010

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010
Country/TerritoryUnited States
CityDallas, TX
Period14/03/1019/03/10

Keywords

  • Feature extraction
  • Speaker recognition
  • Speech enhancement

Fingerprint

Dive into the research topics of 'Kernel multimodal discriminant analysis for speaker verification'. Together they form a unique fingerprint.

Cite this