TY - JOUR
T1 - Label-free and liquid state SERS detection of multi-scaled bioanalytes via light-induced pinpoint colloidal assembly
AU - Han, Seungyeon
AU - Park, Junhee
AU - Moon, Sunghyun
AU - Eom, Seonghyeon
AU - Jin, Chang Min
AU - Kim, Seungmin
AU - Ryu, Yong Sang
AU - Choi, Yeonho
AU - Lee, Jong Bum
AU - Choi, Inhee
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/11/15
Y1 - 2024/11/15
N2 - Surface-enhanced Raman scattering (SERS) has been extensively applied to detect complex analytes due to its ability to enhance the fingerprint signals of molecules around nanostructured metallic surfaces. Thus, it is essential to design SERS-active nanostructures with abundant electromagnetic hotspots in a probed volume according to the dimensions of the analytes, as the analytes must be located in their hotspots for maximum signal enhancement. Herein, we demonstrate a simple method for detecting robust SERS signals from multi-scaled bioanalytes, regardless of their dimensions in the liquid state, through a photothermally driven co-assembly with colloidal plasmonic nanoparticles as signal enhancers. Under resonant light illumination, plasmonic nanoparticles and analytes in the solution quickly assemble at the focused surface area by convective movements induced by the photothermal heating of the plasmonic nanoparticles without any surface modification. Such collective assemblies of plasmonic nanoparticles and analytes were optimized by varying the optical density and surface charge of the nanoparticles, the viscosity of the solvent, and the light illumination time to maximize the SERS signals. Using these light-induced co-assemblies, the intrinsic SERS signals of small biomolecules can be detected down to nanomolar concentrations based on their fingerprint spectra. Furthermore, large-sized biomarkers, such as viruses and exosomes, were successfully detected without labels, and the complexity of the collected spectra was statistically analyzed using t-distributed stochastic neighbor embedding combined with support vector machine (t-SNE + SVM). The proposed method is expected to provide a robust and convenient method to sensitively detect biologically and environmentally relevant analytes at multiple scales in liquid samples.
AB - Surface-enhanced Raman scattering (SERS) has been extensively applied to detect complex analytes due to its ability to enhance the fingerprint signals of molecules around nanostructured metallic surfaces. Thus, it is essential to design SERS-active nanostructures with abundant electromagnetic hotspots in a probed volume according to the dimensions of the analytes, as the analytes must be located in their hotspots for maximum signal enhancement. Herein, we demonstrate a simple method for detecting robust SERS signals from multi-scaled bioanalytes, regardless of their dimensions in the liquid state, through a photothermally driven co-assembly with colloidal plasmonic nanoparticles as signal enhancers. Under resonant light illumination, plasmonic nanoparticles and analytes in the solution quickly assemble at the focused surface area by convective movements induced by the photothermal heating of the plasmonic nanoparticles without any surface modification. Such collective assemblies of plasmonic nanoparticles and analytes were optimized by varying the optical density and surface charge of the nanoparticles, the viscosity of the solvent, and the light illumination time to maximize the SERS signals. Using these light-induced co-assemblies, the intrinsic SERS signals of small biomolecules can be detected down to nanomolar concentrations based on their fingerprint spectra. Furthermore, large-sized biomarkers, such as viruses and exosomes, were successfully detected without labels, and the complexity of the collected spectra was statistically analyzed using t-distributed stochastic neighbor embedding combined with support vector machine (t-SNE + SVM). The proposed method is expected to provide a robust and convenient method to sensitively detect biologically and environmentally relevant analytes at multiple scales in liquid samples.
KW - Biomarkers
KW - Exosomes
KW - Photothermal convection
KW - Plasmonic nanoparticles
KW - Surface-enhanced Raman spectroscopy
KW - Viruses
UR - http://www.scopus.com/inward/record.url?scp=85201388809&partnerID=8YFLogxK
U2 - 10.1016/j.bios.2024.116663
DO - 10.1016/j.bios.2024.116663
M3 - Article
C2 - 39167886
AN - SCOPUS:85201388809
SN - 0956-5663
VL - 264
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
M1 - 116663
ER -