TY - JOUR
T1 - Ladder-type oligo- p -phenylene-containing copolymers with high open-circuit voltages and ambient photovoltaic activity
AU - Zheng, Qingdong
AU - Jung, Byung Jun
AU - Sun, Jia
AU - Katz, Howard E.
PY - 2010/4/21
Y1 - 2010/4/21
N2 - Four ladder-type oligo-p-phenylene containing donor-acceptor copolymers were designed, synthesized, and characterized. The ladder-type oligo-p-phenylene was used as an electron donor unit in these copolymers to provide a deeper highest occupied molecular orbital (HOMO) level for obtaining polymer solar cells with a higher open-circuit voltage, while 4,7-dithien-2-yl-2,1,3- benzothiadiazole or 5,8-dithien-2-yl-2,3-diphenylquinoxaline was chosen as an electron acceptor unit to tune the electronic band gaps of the polymers for a better light harvesting ability. These copolymers exhibit field-effect mobilities as high as 0.011 cm2/(V s). Compared to fluorene containing copolymers with the same acceptor unit, these ladder-type oligo-p-phenylene containing copolymers have enhanced and bathochromically shifted absorption bands and much better solubility in organic solvents. Photovoltaic applications of these polymers as light-harvesting and hole-conducting materials are investigated in conjunction with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). Without extensive optimization work, a power conversion efficiency (PCE) of 3.7% and a high open-circuit voltage of 1.06 V are obtained under simulated solar light AM 1.5 G (100 mW/cm2) from a solar cell with an active layer containing 20 wt % ladder-type tetra-p-phenylene containing copolymer (P3FTBT6) and 80 wt % PC61BM. Moreover, a high PCE of 4.5% was also achieved from a solar cell with an active layer containing 20 wt % P3FTBT6 and 80 wt % PC 71BM.
AB - Four ladder-type oligo-p-phenylene containing donor-acceptor copolymers were designed, synthesized, and characterized. The ladder-type oligo-p-phenylene was used as an electron donor unit in these copolymers to provide a deeper highest occupied molecular orbital (HOMO) level for obtaining polymer solar cells with a higher open-circuit voltage, while 4,7-dithien-2-yl-2,1,3- benzothiadiazole or 5,8-dithien-2-yl-2,3-diphenylquinoxaline was chosen as an electron acceptor unit to tune the electronic band gaps of the polymers for a better light harvesting ability. These copolymers exhibit field-effect mobilities as high as 0.011 cm2/(V s). Compared to fluorene containing copolymers with the same acceptor unit, these ladder-type oligo-p-phenylene containing copolymers have enhanced and bathochromically shifted absorption bands and much better solubility in organic solvents. Photovoltaic applications of these polymers as light-harvesting and hole-conducting materials are investigated in conjunction with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). Without extensive optimization work, a power conversion efficiency (PCE) of 3.7% and a high open-circuit voltage of 1.06 V are obtained under simulated solar light AM 1.5 G (100 mW/cm2) from a solar cell with an active layer containing 20 wt % ladder-type tetra-p-phenylene containing copolymer (P3FTBT6) and 80 wt % PC61BM. Moreover, a high PCE of 4.5% was also achieved from a solar cell with an active layer containing 20 wt % P3FTBT6 and 80 wt % PC 71BM.
UR - http://www.scopus.com/inward/record.url?scp=77951030554&partnerID=8YFLogxK
U2 - 10.1021/ja909111p
DO - 10.1021/ja909111p
M3 - Article
AN - SCOPUS:77951030554
SN - 0002-7863
VL - 132
SP - 5394
EP - 5404
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 15
ER -