TY - GEN
T1 - Learning with limited data for multilingual reading comprehension
AU - Lee, Kyungjae
AU - Park, Sunghyun
AU - Han, Hojae
AU - Yeo, Jinyoung
AU - Hwang, Seung Won
AU - Lee, Juho
N1 - Publisher Copyright:
© 2019 Association for Computational Linguistics
PY - 2019
Y1 - 2019
N2 - This paper studies the problem of supporting question answering in a new language with limited training resources. As an extreme scenario, when no such resource exists, one can (1) transfer labels from another language, and (2) generate labels from unlabeled data, using translator and automatic labeling function respectively. However, these approaches inevitably introduce noises to the training data, due to translation or generation errors, which require a judicious use of data with varying confidence. To address this challenge, we propose a weakly-supervised framework that quantifies such noises from automatically generated labels, to deemphasize or fix noisy data in training. On reading comprehension task, we demonstrate the effectiveness of our model on low-resource languages with varying similarity to English, namely, Korean and French.
AB - This paper studies the problem of supporting question answering in a new language with limited training resources. As an extreme scenario, when no such resource exists, one can (1) transfer labels from another language, and (2) generate labels from unlabeled data, using translator and automatic labeling function respectively. However, these approaches inevitably introduce noises to the training data, due to translation or generation errors, which require a judicious use of data with varying confidence. To address this challenge, we propose a weakly-supervised framework that quantifies such noises from automatically generated labels, to deemphasize or fix noisy data in training. On reading comprehension task, we demonstrate the effectiveness of our model on low-resource languages with varying similarity to English, namely, Korean and French.
UR - http://www.scopus.com/inward/record.url?scp=85084308611&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85084308611
T3 - EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
SP - 2840
EP - 2850
BT - EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
PB - Association for Computational Linguistics
T2 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019
Y2 - 3 November 2019 through 7 November 2019
ER -