Abstract
Twisted bilayer graphene (tBLG) forms a quasicrystal whose structural and electronic properties depend on the angle of rotation between its layers. Here, we present a scanning tunneling microscopy study of gate-tunable tBLG devices supported by atomically smooth and chemically inert hexagonal boron nitride (BN). The high quality of these tBLG devices allows identification of coexisting moiré patterns and moiré super-superlattices produced by graphene-graphene and graphene-BN interlayer interactions. Furthermore, we examine additional tBLG spectroscopic features in the local density of states beyond the first van Hove singularity. Our experimental data are explained by a theory of moiré bands that incorporates ab initio calculations and confirms the strongly nonperturbative character of tBLG interlayer coupling in the small twist-angle regime.
Original language | English |
---|---|
Article number | 155409 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 92 |
Issue number | 15 |
DOIs | |
State | Published - 7 Oct 2015 |