TY - JOUR
T1 - Metal–Organic Frameworks Derived from Zero-Valent Metal Substrates
T2 - Mechanisms of Formation and Modulation of Properties
AU - Kim, Jieun
AU - Lee, Seungju
AU - Kim, Jaesung
AU - Lee, Doohwan
N1 - Publisher Copyright:
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2019/2/21
Y1 - 2019/2/21
N2 - The replicative construction of metal–organic frameworks (MOFs) templated with solvent-insoluble solid substrates is of marked importance, as it allows for the assembly of 2D and 3D macro- and mesoscopic architectures with properties that are challenging to attain by the conventional solution-based synthesis approach. This work reports an in situ and direct construction of MOFs from zero-valent metal substrates via a green hydrothermal oxidation–MOF construction chemistry without the use of any additional metal source, chemical reagents, or acidification of solvent, and elucidates the zero-valent metal derived formation mechanisms of MOFs and their structure modulation to 1D nanofibers (NFs), 2D film, and 3D core–shell microstructures. Through modulation of the competing surface oxidation-dissolution and MOF crystallization kinetics, Al@MIL-53 core–shell microstructures and MIL-53 (Al) NFs are obtained that exhibit unique morphologies and marked properties superior to the conventional MIL-53 (Al) powders. The generality of zero-valent metal-templated synthesis of MOFs is demonstrated with formation of MIL-53 (Al), HKUST-1, and ZIF-7 polycrystalline films on Al, Cu, and Zn metal meshes, elucidating the significance of the approach utilizing solid metal substrate that can be easily processed into various shapes, architectures, and compositions.
AB - The replicative construction of metal–organic frameworks (MOFs) templated with solvent-insoluble solid substrates is of marked importance, as it allows for the assembly of 2D and 3D macro- and mesoscopic architectures with properties that are challenging to attain by the conventional solution-based synthesis approach. This work reports an in situ and direct construction of MOFs from zero-valent metal substrates via a green hydrothermal oxidation–MOF construction chemistry without the use of any additional metal source, chemical reagents, or acidification of solvent, and elucidates the zero-valent metal derived formation mechanisms of MOFs and their structure modulation to 1D nanofibers (NFs), 2D film, and 3D core–shell microstructures. Through modulation of the competing surface oxidation-dissolution and MOF crystallization kinetics, Al@MIL-53 core–shell microstructures and MIL-53 (Al) NFs are obtained that exhibit unique morphologies and marked properties superior to the conventional MIL-53 (Al) powders. The generality of zero-valent metal-templated synthesis of MOFs is demonstrated with formation of MIL-53 (Al), HKUST-1, and ZIF-7 polycrystalline films on Al, Cu, and Zn metal meshes, elucidating the significance of the approach utilizing solid metal substrate that can be easily processed into various shapes, architectures, and compositions.
KW - MOF nanofibers
KW - core–shell structure
KW - formation mechanism
KW - metal–organic framework
KW - templated synthesis
UR - http://www.scopus.com/inward/record.url?scp=85059629049&partnerID=8YFLogxK
U2 - 10.1002/adfm.201808466
DO - 10.1002/adfm.201808466
M3 - Article
AN - SCOPUS:85059629049
SN - 1616-301X
VL - 29
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 8
M1 - 1808466
ER -