Abstract
We demonstrate the use of an all-fiberized, mode-locked 1.94 μm laser with a saturable absorption device based on a tungsten disulfide (WS2)-deposited side-polished fiber. The WS2 particles were prepared via liquid phase exfoliation (LPE) without centrifugation. A series of measurements including Raman spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the prepared particles had thick nanostructures of more than 5 layers. The prepared saturable absorption device used the evanescent field interaction mechanism between the oscillating beam and WS2 particles and its modulation depth was measured to be ∼10.9% at a wavelength of 1925 nm. Incorporating the WS2-based saturable absorption device into a thuliumholmium co-doped fiber ring cavity, stable mode-locked pulses with a temporal width of ∼1.3 ps at a repetition rate of 34.8 MHz were readily obtained at a wavelength of 1941 nm. The results of this experiment confirm that WS2 can be used as an effective broadband saturable absorption material that is suitable to passively generate pulses at 2 μm wavelengths.
Original language | English |
---|---|
Pages (from-to) | 19996-20006 |
Number of pages | 11 |
Journal | Optics Express |
Volume | 23 |
Issue number | 15 |
DOIs | |
State | Published - 27 Jul 2015 |