TY - JOUR
T1 - Multifunctional β-Cyclodextrin-EDTA-Chitosan polymer adsorbent synthesis for simultaneous removal of heavy metals and organic dyes from wastewater
AU - Verma, Monu
AU - Lee, Ingyu
AU - Hong, Youngmin
AU - Kumar, Vinod
AU - Kim, Hyunook
N1 - Publisher Copyright:
© 2021
PY - 2022/1/1
Y1 - 2022/1/1
N2 - Heavy metals and organic dyes are the major source of water pollution. Herein, a trifunctional β−cyclodextrin−ethylenediaminetetraacetic acid−chitosan (β−CD−EDTA−CS) polymer was synthesized using an easy and simple chemical route by the reaction of activated β−CD with CS through EDTA as a cross-linker (amidation reaction) for the removal of inorganic and organic pollutants from aqueous solution under different parameters such as pH, time effect, initial concentration, reusability, etc. The synthesized adsorbent was characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, field scanning electron microscopy, energy dispersive spectroscopy, Brunauer-Emmett-Teller (BET), thermogravimetric analyzer techniques to investigate their structural, functional, morphological, elemental compositions, surface area and thermal properties, respectively. Two types of heavy metals, i.e., mercury (Hg2+) and cadmium (Cd2+), and three organic dyes, i.e., methylene blue (MB), crystal violet (CV) and safranin O (SO) were chosen as inorganic and organic pollutants, respectively, to study the adsorption capacity of β-CD-EDTA-CS in aqueous solution. The β-CD-EDTA-CS shows monolayer adsorption capacity 346.30 ± 14.0 and 202.90 ± 13.90 mg g−1 for Hg2+ and Cd2+, respectively, and a heterogeneous adsorption capacity 107.20 ± 5.70, 77.40 ± 5.30 and 55.30 ± 3.60 mg g−1 for MB, CV and SO, respectively. Kinetics results followed pseudo-second order (PSO) kinetics behavior for both metal ions and dyes, and higher rate constants values (0.00161–0.00368 g mg−1 min−1) for dyes confirmed the cavitation of organic dyes (physisorption). In addition, we have also demonstrated the performance of β-CD-EDTA-CS for the of four heavy metals Hg2+, Cd2+, Ni2+, and Cu2+ and three dyes MB, CV, and SO in secondary treated wastewater. Findings of this study indicate that β-CD-EDTA-CS simple and essay to synthesize and can be use in wastewater treatment.
AB - Heavy metals and organic dyes are the major source of water pollution. Herein, a trifunctional β−cyclodextrin−ethylenediaminetetraacetic acid−chitosan (β−CD−EDTA−CS) polymer was synthesized using an easy and simple chemical route by the reaction of activated β−CD with CS through EDTA as a cross-linker (amidation reaction) for the removal of inorganic and organic pollutants from aqueous solution under different parameters such as pH, time effect, initial concentration, reusability, etc. The synthesized adsorbent was characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, field scanning electron microscopy, energy dispersive spectroscopy, Brunauer-Emmett-Teller (BET), thermogravimetric analyzer techniques to investigate their structural, functional, morphological, elemental compositions, surface area and thermal properties, respectively. Two types of heavy metals, i.e., mercury (Hg2+) and cadmium (Cd2+), and three organic dyes, i.e., methylene blue (MB), crystal violet (CV) and safranin O (SO) were chosen as inorganic and organic pollutants, respectively, to study the adsorption capacity of β-CD-EDTA-CS in aqueous solution. The β-CD-EDTA-CS shows monolayer adsorption capacity 346.30 ± 14.0 and 202.90 ± 13.90 mg g−1 for Hg2+ and Cd2+, respectively, and a heterogeneous adsorption capacity 107.20 ± 5.70, 77.40 ± 5.30 and 55.30 ± 3.60 mg g−1 for MB, CV and SO, respectively. Kinetics results followed pseudo-second order (PSO) kinetics behavior for both metal ions and dyes, and higher rate constants values (0.00161–0.00368 g mg−1 min−1) for dyes confirmed the cavitation of organic dyes (physisorption). In addition, we have also demonstrated the performance of β-CD-EDTA-CS for the of four heavy metals Hg2+, Cd2+, Ni2+, and Cu2+ and three dyes MB, CV, and SO in secondary treated wastewater. Findings of this study indicate that β-CD-EDTA-CS simple and essay to synthesize and can be use in wastewater treatment.
KW - Adsorption isotherms
KW - Adsorption mechanism
KW - Amino-β-cyclodextrin
KW - Heavy metal ions
KW - Organic dyes
KW - Simultaneous adsorption
UR - http://www.scopus.com/inward/record.url?scp=85118566836&partnerID=8YFLogxK
U2 - 10.1016/j.envpol.2021.118447
DO - 10.1016/j.envpol.2021.118447
M3 - Article
C2 - 34742823
AN - SCOPUS:85118566836
SN - 0269-7491
VL - 292
JO - Environmental Pollution
JF - Environmental Pollution
M1 - 118447
ER -