TY - JOUR
T1 - Nanostructure and optoelectronic characterization of small molecule bulk heterojunction solar cells by photoconductive atomic force microscopy
AU - Dang, Xuan Dung
AU - Tamayo, Arnold B.
AU - Seo, Junghwa
AU - Hoven, Corey V.
AU - Walker, Bright
AU - Nguyen, Thuc Quyen
PY - 2010/10/8
Y1 - 2010/10/8
N2 - Photoconductive atomic force microscopy is employed to study the nanoscale morphology and optoelectronic properties of bulk heterojunction solar cells based on small molecules containing a benzofuran substituted diketopyrrolopyrrole ( DPP ) core (3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl)- 2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione, DPP(TBFu)2 , and [6,6]-phenyl-C 71 -butyric acid methyl ester (PC 71 BM) , which were recently reported to have power conversion effi ciencies of 4.4%. Electron and hole collection networks are visualized for blends with different donor:acceptor ratios. Formation of nanostructures in the blends leads to a higher interfacial area for charge dissociation, while maintaining bicontinuous collection networks; conditions that lead to the high effi ciency observed in the devices. An excellent agreement between nanoscale and bulk open-circuit voltage measurements is achieved by surface modifi cation of the indium tin oxide (ITO) substrate by using aminopropyltrimethoxysilane. The local open-circuit voltage is linearly dependent on the cathode work function. These results demonstrate that photoconductive atomic force microscopy coupled with surface modifi cation of ITO substrate can be used to study nanoscale optoelectronic phenomena of organic solar cells.
AB - Photoconductive atomic force microscopy is employed to study the nanoscale morphology and optoelectronic properties of bulk heterojunction solar cells based on small molecules containing a benzofuran substituted diketopyrrolopyrrole ( DPP ) core (3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl)- 2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione, DPP(TBFu)2 , and [6,6]-phenyl-C 71 -butyric acid methyl ester (PC 71 BM) , which were recently reported to have power conversion effi ciencies of 4.4%. Electron and hole collection networks are visualized for blends with different donor:acceptor ratios. Formation of nanostructures in the blends leads to a higher interfacial area for charge dissociation, while maintaining bicontinuous collection networks; conditions that lead to the high effi ciency observed in the devices. An excellent agreement between nanoscale and bulk open-circuit voltage measurements is achieved by surface modifi cation of the indium tin oxide (ITO) substrate by using aminopropyltrimethoxysilane. The local open-circuit voltage is linearly dependent on the cathode work function. These results demonstrate that photoconductive atomic force microscopy coupled with surface modifi cation of ITO substrate can be used to study nanoscale optoelectronic phenomena of organic solar cells.
UR - http://www.scopus.com/inward/record.url?scp=77957563717&partnerID=8YFLogxK
U2 - 10.1002/adfm.201000799
DO - 10.1002/adfm.201000799
M3 - Article
AN - SCOPUS:77957563717
SN - 1616-301X
VL - 20
SP - 3314
EP - 3321
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 19
ER -