TY - GEN
T1 - On Complementarity Objectives for Hybrid Retrieval
AU - Lee, Dohyeon
AU - Hwang, Seung Won
AU - Lee, Kyungjae
AU - Choi, Seungtaek
AU - Park, Sunghyun
N1 - Publisher Copyright:
© 2023 Association for Computational Linguistics.
PY - 2023
Y1 - 2023
N2 - Dense retrieval has shown promising results in various information retrieval tasks, and hybrid retrieval, combined with the strength of sparse retrieval, has also been actively studied. A key challenge in hybrid retrieval is to make sparse and dense complementary to each other. Existing models have focused on dense models to capture “residual” features neglected in the sparse models. Our key distinction is to show how this notion of residual complementarity is limited, and propose a new objective, denoted as RoC (Ratio of Complementarity), which captures a fuller notion of complementarity. We propose a two-level orthogonality designed to improve RoC, then show that the improved RoC of our model, in turn, improves the performance of hybrid retrieval. Our method outperforms all state-of-the-art methods on three representative IR benchmarks: MSMARCO-Passage, Natural Questions, and TREC Robust04, with statistical significance. Our finding is also consistent in various adversarial settings.
AB - Dense retrieval has shown promising results in various information retrieval tasks, and hybrid retrieval, combined with the strength of sparse retrieval, has also been actively studied. A key challenge in hybrid retrieval is to make sparse and dense complementary to each other. Existing models have focused on dense models to capture “residual” features neglected in the sparse models. Our key distinction is to show how this notion of residual complementarity is limited, and propose a new objective, denoted as RoC (Ratio of Complementarity), which captures a fuller notion of complementarity. We propose a two-level orthogonality designed to improve RoC, then show that the improved RoC of our model, in turn, improves the performance of hybrid retrieval. Our method outperforms all state-of-the-art methods on three representative IR benchmarks: MSMARCO-Passage, Natural Questions, and TREC Robust04, with statistical significance. Our finding is also consistent in various adversarial settings.
UR - http://www.scopus.com/inward/record.url?scp=85174406678&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85174406678
T3 - Proceedings of the Annual Meeting of the Association for Computational Linguistics
SP - 13357
EP - 13368
BT - Long Papers
PB - Association for Computational Linguistics (ACL)
T2 - 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
Y2 - 9 July 2023 through 14 July 2023
ER -