Operational characteristics of the direct methanol fuel cell stack on fuel and energy efficiency with performance and stability

Jun Young Park, Yongho Seo, Sangkyun Kang, Daejong You, Hyejung Cho, Youngseung Na

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

This paper is presented to investigate operational characteristics of a direct methanol fuel cell (DMFC) stack with regard to fuel and energy efficiency, including its performance and stability under various operating conditions. Fuel efficiency of the DMFC stack is strongly dependent on fuel concentration, working temperature, current density, and anode channel configuration in the bipolar plates and noticeably increases due to the reduced methanol crossover through the membrane, as the current density increases and the methanol concentration, anode channel depth, and temperature decreases. It is, however, revealed that the energy efficiency of the DMFC stack is not always improved with increased fuel efficiency, since the reduced methanol crossover does not always indicate an increase in the power of the DMFC stack. Further, a lower methanol concentration and temperature sacrifice the power and operational stability of the stack with the large difference of cell voltages, even though the stack shows more than 90% of fuel efficiency in this operating condition. The energy efficiency is therefore a more important characteristic to find optimal operating conditions in the DMFC stack than fuel efficiency based on the methanol utilization and crossover, since it considers both fuel efficiency and cell electrical power. These efforts may contribute to commercialization of the highly efficient DMFC system, through reduction of the loss of energy and fuel.

Original languageEnglish
Pages (from-to)5946-5957
Number of pages12
JournalInternational Journal of Hydrogen Energy
Volume37
Issue number7
DOIs
StatePublished - Apr 2012

Keywords

  • Direct methanol fuel cell
  • Energy efficiency
  • Fuel efficiency
  • Methanol crossover
  • Stability
  • Stack

Fingerprint

Dive into the research topics of 'Operational characteristics of the direct methanol fuel cell stack on fuel and energy efficiency with performance and stability'. Together they form a unique fingerprint.

Cite this