Optimal Design of a Surface Permanent Magnet Machine for Electric Power Steering Systems in Electric Vehicle Applications Using a Gaussian Process-Based Approach

Gilsu Choi, Gwan Hui Jang, Mingyu Choi, Jungmoon Kang, Ye Gu Kang, Sehwan Kim

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The efficient design optimization of electric machines for electric power steering (EPS) applications poses challenges in meeting demanding performance criteria, including high power density, efficiency, and low vibration. Traditional optimization approaches often fail to find a global solution or suffer from excessive computation time. In response to the limitations of traditional approaches, this paper introduces a novel methodology by incorporating a Gaussian process-based adaptive sampling technique into a surrogate-assisted optimization process using a metaheuristic algorithm. Validation on a 72-slot/8-pole interior permanent magnet (IPM) machine demonstrates the superiority of the proposed approach, showcasing improved exploitation–exploration balance, faster convergence, and enhanced repeatability compared to conventional optimization methods. The proposed design process is then applied to two surface PM (SPM) machine configurations with 9-slot/6-pole and 12-slot/10-pole combinations for EPS applications. The results indicate that the 12-slot/10-pole SPM design surpasses the alternative design in torque density, efficiency, cogging torque, torque ripple, and manufacturability.

Original languageEnglish
Article number13
JournalActuators
Volume13
Issue number1
DOIs
StatePublished - Jan 2024

Keywords

  • adaptive sampling
  • design optimization
  • electric machines
  • electric power steering systems
  • electric vehicles
  • gaussian process

Fingerprint

Dive into the research topics of 'Optimal Design of a Surface Permanent Magnet Machine for Electric Power Steering Systems in Electric Vehicle Applications Using a Gaussian Process-Based Approach'. Together they form a unique fingerprint.

Cite this