Abstract
Thin-film solar cells based on hydrogenated amorphous silicon (a-Si:H) and conjugated polymers have been studied extensively. However, organic-inorganic hybrid tandem solar cells incorporating the two materials as subcells are yet to be extensively studied. Here, a computational study on the optimal design of organic-inorganic hybrid tandem solar cells to achieve the maximum possible efficiency is presented. The optical simulations predict the optimal design of an organic-inorganic hybrid tandem solar cell, desirable for a wide range of spectral response and high efficiency. The optimum combination of thicknesses of a-Si:H and organic photovoltaic (OPV) subcells to achieve the highest possible efficiency in terms of short circuit current (Jsc) is determined. Thicknesses of 400 and 140 nm for a-Si:H and OPV subcells, respectively, are suggested for the optimised tandem solar cell to achieve current matching and a maximum power conversion efficiency of 11.57%.
Original language | English |
---|---|
Pages (from-to) | 881-883 |
Number of pages | 3 |
Journal | Micro and Nano Letters |
Volume | 9 |
Issue number | 12 |
DOIs | |
State | Published - 1 Dec 2014 |