Ordered Mesoporous C3N5 with a Combined Triazole and Triazine Framework and Its Graphene Hybrids for the Oxygen Reduction Reaction (ORR)

In Young Kim, Sungho Kim, Xiaoyan Jin, Selvarajan Premkumar, Goutam Chandra, Nam Suk Lee, Gurudas P. Mane, Seong Ju Hwang, Siva Umapathy, Ajayan Vinu

Research output: Contribution to journalArticlepeer-review

168 Scopus citations

Abstract

Mesoporous carbon nitrides (MCN) with C3N4 stoichiometry could find applications in fields ranging from catalysis, sensing, and adsorption–separation to biotechnology. The extension of the synthesis of MCN with different nitrogen contents and chemical structures promises access to a wider range of applications. Herein we prepare mesoporous C3N5 with a combined triazole and triazine framework via a simple self-assembly of 5-amino-1H-tetrazole (5-ATTZ). We are able to hybridize these nanostructures with graphene by using graphene–mesoporous-silica hybrids as a template to tune the electronic properties. DFT calculations and spectroscopic analyses clearly demonstrate that the C3N5 consists of 1 triazole and 2 triazine moieties. The triazole-based mesoporous C3N5 and its graphene hybrids are found to be highly active for oxygen reduction reaction (ORR) with a higher diffusion-limiting current density and a decreased overpotential than those of bulk g-C3N4.

Original languageEnglish
Pages (from-to)17135-17140
Number of pages6
JournalAngewandte Chemie - International Edition
Volume57
Issue number52
DOIs
StatePublished - 21 Dec 2018

Keywords

  • N-rich carbon nitrides
  • electrocatalysts
  • oxygen reduction reaction
  • porous materials
  • triazoles

Fingerprint

Dive into the research topics of 'Ordered Mesoporous C3N5 with a Combined Triazole and Triazine Framework and Its Graphene Hybrids for the Oxygen Reduction Reaction (ORR)'. Together they form a unique fingerprint.

Cite this