TY - JOUR
T1 - Performance comparison of oil spill and ship classification from x-band dual-and single-polarized sar image using support vector machine, random forest, and deep neural network
AU - Baek, Won Kyung
AU - Jung, Hyung Sup
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/8/2
Y1 - 2021/8/2
N2 - It is well known that the polarization characteristics in X-band synthetic aperture radar (SAR) image analysis can provide us with additional information for marine target classification and detection. Normally, dual-and single-polarized SAR images are acquired by SAR satellites, and then we must determine how accurate the marine mapping performance from dual-polarized (pol) images is versus the marine mapping performance from the single-pol images in a given machine learning model. The purpose of this study is to compare the performance of single-and dual-pol SAR image classification achieved by the support vector machine (SVM), random forest (RF), and deep neural network (DNN) models. The test image is a TerraSAR-X dual-pol image acquired from the 2007 Kerch Strait oil spill event. For this, 824,026 pixels and 1,648,051 pixels were extracted from the image for the training and test, respectively, and sea, ship, oil, and land objects were classified from the image by using the three machine learning methods. The mean f1-scores of the SVM, RF, and DNN models resulting from the single-pol image were approximately 0.822, 0.882, and 0.889, respectively, and those from the dual-pol image were about 0.852, 0.908, and 0.898, respectively. The performance improvement achieved by dual-pol was about 3.6%, 2.9%, and 1% in SVM, RF, and DNN, respectively. The DNN model had the best performance (0.889) in the single-pol test while the RF model was best (0.908) in the dual-pol test. The performance improvement was approximately 2.1% and not noticeable. If the condition that dual-pol images have two-times lower spatial resolution versus single-pol images in the azimuth direction is considered, a small improvement may not be valuable. Therefore, the results show that the performance improvement by X-band dual-pol image may be not remarkable when classifying the sea, ships, oil spills, and sea and land surfaces.
AB - It is well known that the polarization characteristics in X-band synthetic aperture radar (SAR) image analysis can provide us with additional information for marine target classification and detection. Normally, dual-and single-polarized SAR images are acquired by SAR satellites, and then we must determine how accurate the marine mapping performance from dual-polarized (pol) images is versus the marine mapping performance from the single-pol images in a given machine learning model. The purpose of this study is to compare the performance of single-and dual-pol SAR image classification achieved by the support vector machine (SVM), random forest (RF), and deep neural network (DNN) models. The test image is a TerraSAR-X dual-pol image acquired from the 2007 Kerch Strait oil spill event. For this, 824,026 pixels and 1,648,051 pixels were extracted from the image for the training and test, respectively, and sea, ship, oil, and land objects were classified from the image by using the three machine learning methods. The mean f1-scores of the SVM, RF, and DNN models resulting from the single-pol image were approximately 0.822, 0.882, and 0.889, respectively, and those from the dual-pol image were about 0.852, 0.908, and 0.898, respectively. The performance improvement achieved by dual-pol was about 3.6%, 2.9%, and 1% in SVM, RF, and DNN, respectively. The DNN model had the best performance (0.889) in the single-pol test while the RF model was best (0.908) in the dual-pol test. The performance improvement was approximately 2.1% and not noticeable. If the condition that dual-pol images have two-times lower spatial resolution versus single-pol images in the azimuth direction is considered, a small improvement may not be valuable. Therefore, the results show that the performance improvement by X-band dual-pol image may be not remarkable when classifying the sea, ships, oil spills, and sea and land surfaces.
KW - Deep neural network
KW - Polarization
KW - Random forest
KW - Support vector machine
KW - Synthetic aperture radar (SAR)
UR - http://www.scopus.com/inward/record.url?scp=85112678945&partnerID=8YFLogxK
U2 - 10.3390/rs13163203
DO - 10.3390/rs13163203
M3 - Article
AN - SCOPUS:85112678945
SN - 2072-4292
VL - 13
JO - Remote Sensing
JF - Remote Sensing
IS - 16
M1 - 3203
ER -