Abstract
In this study, several purge and ventilation methods are proposed to reduce and remove condensation in a heat recovery ventilator for commercial and household buildings. The effects of the airflow rate, duration of ventilation, purge interval, and return air temperature on the quantities of condensation and condensation removal in the heat recovery ventilator are analyzed. The increase in the air flow rate and return air temperature increases the condensation removal rate owing to the enhanced evaporation of the condensate. Furthermore, the reductions in the duration of ventilation and purge interval decreased the accumulation of condensate on the heat exchanger element. Based on the experimental results, optimum ventilation and purge strategies are proposed according to the outdoor temperature. The operation of the heat recovery ventilator with the proposed ventilation and purge strategies shows at least a 33% and up to an 80% reduction in the quantity of condensate compared with a given operation method. Accordingly, the proposed operation strategies can significantly reduce the growth of microorganisms and fungi and also increase the efficiency of a heat recovery ventilator. However, further investigation on the detailed performance according to the outdoor humidity and overall energy analysis is necessary to supplement the limitations of this study.
Original language | English |
---|---|
Article number | 6152 |
Journal | Energies |
Volume | 13 |
Issue number | 22 |
DOIs | |
State | Published - 2 Nov 2020 |
Keywords
- Condensation reduction
- Heat recovery ventilator
- Purge
- Ventilation