TY - JOUR
T1 - Phosphorus load estimation in the Saginaw River, MI using a Bayesian hierarchical/multilevel model
AU - Cha, Yoon Kyung
AU - Stow, Craig A.
AU - Reckhow, Kenneth H.
AU - DeMarchi, Carlo
AU - Johengen, Thomas H.
PY - 2010/5
Y1 - 2010/5
N2 - We propose the use of Bayesian hierarchical/multilevel ratio approach to estimate the annual riverine phosphorus loads in the Saginaw River, Michigan, from 1968 to 2008. The ratio estimator is known to be an unbiased, precise approach for differing flow-concentration relationships and sampling schemes. A Bayesian model can explicitly address the uncertainty in prediction by using a posterior predictive distribution, while in comparison, a Bayesian hierarchical technique can overcome the limitation of interpreting the estimated annual loads inferred from small sample sizes by borrowing strength from the underlying population shared by the years of interest. Thus, by combining the ratio estimator with the Bayesian hierarchical modeling framework, long-term loads estimation can be addressed with explicit quantification of uncertainty. Our study results indicate a slight decrease in total phosphorus load early in the series. The estimated ratio parameter, which can be interpreted as flow-weighted concentration, shows a clearer decrease, damping the noise that yearly flow variation adds to the load. Despite the reductions, it is not likely that Saginaw Bay meets with its target phosphorus load, 440 tonnes/yr. Throughout the decades, the probabilities of the Saginaw Bay not complying with the target load are estimated as 1.00, 0.50, 0.57 and 0.36 in 1977, 1987, 1997, and 2007, respectively. We show that the Bayesian hierarchical model results in reasonable goodness-of-fits to the observations whether or not individual loads are aggregated. Also, this modeling approach can substantially reduce uncertainties associated with small sample sizes both in the estimated parameters and loads.
AB - We propose the use of Bayesian hierarchical/multilevel ratio approach to estimate the annual riverine phosphorus loads in the Saginaw River, Michigan, from 1968 to 2008. The ratio estimator is known to be an unbiased, precise approach for differing flow-concentration relationships and sampling schemes. A Bayesian model can explicitly address the uncertainty in prediction by using a posterior predictive distribution, while in comparison, a Bayesian hierarchical technique can overcome the limitation of interpreting the estimated annual loads inferred from small sample sizes by borrowing strength from the underlying population shared by the years of interest. Thus, by combining the ratio estimator with the Bayesian hierarchical modeling framework, long-term loads estimation can be addressed with explicit quantification of uncertainty. Our study results indicate a slight decrease in total phosphorus load early in the series. The estimated ratio parameter, which can be interpreted as flow-weighted concentration, shows a clearer decrease, damping the noise that yearly flow variation adds to the load. Despite the reductions, it is not likely that Saginaw Bay meets with its target phosphorus load, 440 tonnes/yr. Throughout the decades, the probabilities of the Saginaw Bay not complying with the target load are estimated as 1.00, 0.50, 0.57 and 0.36 in 1977, 1987, 1997, and 2007, respectively. We show that the Bayesian hierarchical model results in reasonable goodness-of-fits to the observations whether or not individual loads are aggregated. Also, this modeling approach can substantially reduce uncertainties associated with small sample sizes both in the estimated parameters and loads.
KW - Annual riverine load
KW - Bayesian hierarchical modeling
KW - Predictive uncertainty
KW - Ratio estimation
KW - Total phosphorus
UR - http://www.scopus.com/inward/record.url?scp=77952550819&partnerID=8YFLogxK
U2 - 10.1016/j.watres.2010.03.008
DO - 10.1016/j.watres.2010.03.008
M3 - Article
C2 - 20382406
AN - SCOPUS:77952550819
SN - 0043-1354
VL - 44
SP - 3270
EP - 3282
JO - Water Research
JF - Water Research
IS - 10
ER -