TY - JOUR
T1 - Properties of dye sensitized solar cells with porous TiO2 layers using polymethyl-methacrylate nano beads
AU - Choi, Minkyoung
AU - Noh, Yunyoung
AU - Kim, Kwangbae
AU - Song, Ohsung
N1 - Publisher Copyright:
© Materials Research Society of Korea, All rights reserved.
PY - 2016
Y1 - 2016
N2 - We prepared polymethyl methacrylate (PMMA) beads with a particle size of 80 nm to improve the energy conversion efficiency (ECE) by increasing the effective surface area and the dye absorption ability of the working electrodes (WEs) in a dye sensitized solar cell (DSSC). We prepared the TiO2 layer with PMMA beads of 0.0~1.0 wt%; then, finally, a DSSC with 0.45 cm2 active area was obtained. Optical microscopy, transmission electron microscopy, field emission scanning electron microscopy, and atomic force microscopy were used to characterize the microstructure of the TiO2 layer with PMMA. UV-VIS-NIR was used to determine the optical absorbance of the WEs with PMMA. A solar simulator and a potentiostat were used to determine the photovoltaic properties of the PMMA-added DSSC. Analysis of the microstructure showed that pores of 200 nm were formed by the decomposition of PMMA. Also, root mean square values linearly increased as more PMMA was added. The absorbance in the visible light regime was found to increase as the degree of PMMA dispersion increased. The ECE increased from 4.91% to 5.35% when the amount of PMMA beads added was increased from 0.0 to 0.4 wt%. However, the ECE decreased when more than 0.6 wt% of PMMA was added. Thus, adding a proper amount of PMMA to the TiO2 layer was determined to be an effective method for improving the ECE of a DSSC.
AB - We prepared polymethyl methacrylate (PMMA) beads with a particle size of 80 nm to improve the energy conversion efficiency (ECE) by increasing the effective surface area and the dye absorption ability of the working electrodes (WEs) in a dye sensitized solar cell (DSSC). We prepared the TiO2 layer with PMMA beads of 0.0~1.0 wt%; then, finally, a DSSC with 0.45 cm2 active area was obtained. Optical microscopy, transmission electron microscopy, field emission scanning electron microscopy, and atomic force microscopy were used to characterize the microstructure of the TiO2 layer with PMMA. UV-VIS-NIR was used to determine the optical absorbance of the WEs with PMMA. A solar simulator and a potentiostat were used to determine the photovoltaic properties of the PMMA-added DSSC. Analysis of the microstructure showed that pores of 200 nm were formed by the decomposition of PMMA. Also, root mean square values linearly increased as more PMMA was added. The absorbance in the visible light regime was found to increase as the degree of PMMA dispersion increased. The ECE increased from 4.91% to 5.35% when the amount of PMMA beads added was increased from 0.0 to 0.4 wt%. However, the ECE decreased when more than 0.6 wt% of PMMA was added. Thus, adding a proper amount of PMMA to the TiO2 layer was determined to be an effective method for improving the ECE of a DSSC.
KW - Dye sensitized solar cell
KW - Energy conversion efficiency
KW - Nano beads
KW - Polymethyl methacrylate
KW - TiO layer
UR - http://www.scopus.com/inward/record.url?scp=84974577832&partnerID=8YFLogxK
U2 - 10.3740/MRSK.2016.26.4.194
DO - 10.3740/MRSK.2016.26.4.194
M3 - Article
AN - SCOPUS:84974577832
SN - 1225-0562
VL - 26
SP - 194
EP - 199
JO - Korean Journal of Materials Research
JF - Korean Journal of Materials Research
IS - 4
ER -