Properties of dye sensitized solar cells with porous TiO2 layers using polymethyl-methacrylate nano beads

Minkyoung Choi, Yunyoung Noh, Kwangbae Kim, Ohsung Song

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


We prepared polymethyl methacrylate (PMMA) beads with a particle size of 80 nm to improve the energy conversion efficiency (ECE) by increasing the effective surface area and the dye absorption ability of the working electrodes (WEs) in a dye sensitized solar cell (DSSC). We prepared the TiO2 layer with PMMA beads of 0.0~1.0 wt%; then, finally, a DSSC with 0.45 cm2 active area was obtained. Optical microscopy, transmission electron microscopy, field emission scanning electron microscopy, and atomic force microscopy were used to characterize the microstructure of the TiO2 layer with PMMA. UV-VIS-NIR was used to determine the optical absorbance of the WEs with PMMA. A solar simulator and a potentiostat were used to determine the photovoltaic properties of the PMMA-added DSSC. Analysis of the microstructure showed that pores of 200 nm were formed by the decomposition of PMMA. Also, root mean square values linearly increased as more PMMA was added. The absorbance in the visible light regime was found to increase as the degree of PMMA dispersion increased. The ECE increased from 4.91% to 5.35% when the amount of PMMA beads added was increased from 0.0 to 0.4 wt%. However, the ECE decreased when more than 0.6 wt% of PMMA was added. Thus, adding a proper amount of PMMA to the TiO2 layer was determined to be an effective method for improving the ECE of a DSSC.

Original languageEnglish
Pages (from-to)194-199
Number of pages6
JournalKorean Journal of Materials Research
Issue number4
StatePublished - 2016


  • Dye sensitized solar cell
  • Energy conversion efficiency
  • Nano beads
  • Polymethyl methacrylate
  • TiO layer


Dive into the research topics of 'Properties of dye sensitized solar cells with porous TiO2 layers using polymethyl-methacrylate nano beads'. Together they form a unique fingerprint.

Cite this