Properties of the dye sensitized solar cell with localized surface plasmon resonance inducing Au nano thin films

Yunyoung Noh, Kwangbae Kim, Minkyoung Choi, Ohsung Song

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC) by preparing a working electrode (WE) with localized surface plasmon resonance (LSPR) by inducing Au thin films with thickness of 0.0 to 5.0 nm, deposited via sputtering. Field emission scanning electron microscopy and atomic force microscopy were used to characterize the microstructure of the blocking layer (BL) of the Au thin films. Micro-Raman measurement was employed to confirm the LSPR effect, and a solar simulator and potentiostat were used to evaluate the photovoltaic properties, including the impedance and the I-V of the DSSC of the Au thin films. The results of the microstructural analysis confirmed that nano-sized Au agglomerates were present at certain thicknesses. The photovoltaic results show that the ECE reached a value of 5.34% with a 1-nm thick-Au thin film compared to the value of 5.15 % without the Au thin film. This improvement was a result of the increase in the LSPR of the TiO2 layer that resulted from the Au thin film coating. Our results imply that the ECE of a DSSC may be improved by coating with a proper thickness of Au thin film on the BL.

Original languageEnglish
Pages (from-to)417-421
Number of pages5
JournalKorean Journal of Materials Research
Volume26
Issue number8
DOIs
StatePublished - 2016

Keywords

  • Blocking layer
  • Dye sensitized solar cells
  • Energy conversion efficiency
  • Localized surface plasmon resonance

Fingerprint

Dive into the research topics of 'Properties of the dye sensitized solar cell with localized surface plasmon resonance inducing Au nano thin films'. Together they form a unique fingerprint.

Cite this