Abstract
Al/Pt and Ti/Pt bilayers to a flat glass substrate were employed as a counter electrode to improve the energy conversion efficiency of a dye-sensitized solar cell device with a structure of glass/FTO/blocking layer/TiO2/N719(dye)/electrolyte/(50 nmPt-50 nmAl) or (50 nmPt-50 nmTi)/glass. For comparison, a 100 nmthick Pt counter electrode on a flat glass substrate was also prepared using the same method. The sheet resistance was examined by a four point probe. The photovoltaic properties, such as the short circuit current density, open circuit voltage, fill factor, energy conversion efficiency, and impedance, were characterized using a solar simulator and potentiostat. The phases of the bilayered films were identified by X-ray diffraction. The measured energy conversion efficiencies of the dye-sensitized solar cell devices with Al/Pt and Ti/Pt bilayer counter electrodes were 5.36% and 5.03%, respectively. The interface resistance at the interface between the counter electrode and electrolyte decreased when the Al/Pt and Ti/Pt bilayer thin films were applied. The new phases of AlPt3 and Pt3Ti led to a decrease in resistivity and an increase in catalytic activity. This suggests that Al/Pt and Ti/Pt bilayer thin films might improve the efficiency of dye-sensitized solar cells.
Original language | English |
---|---|
Pages (from-to) | 61-65 |
Number of pages | 5 |
Journal | Journal of Korean Institute of Metals and Materials |
Volume | 52 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2014 |
Keywords
- Bilayer
- Optical properties
- Solar cells
- Solar simulator
- Sputtering