Proposed Utilization of Classification Models for High Ozone Alert Communication in Seoul

Jinhyo Lee, Changhun Sa, Taeho Yoon, Yongsuk Choi, Hyunjung Lee, Jayong Koo

Research output: Contribution to journalArticlepeer-review

Abstract

A machine learning-based classification model was applied to identify the main influencing factors affecting O3 advisory (triggered when hourly average O3 concentrations exceed 0.12 ppm), using existing 25 urban air quality monitoring networks data from Seoul and meteorological data from Seoul automatic weather station (Jongno-gu). From May to September 2023, data were collected and analyzed. The dataset comprised 19 variables, including urban air quality metrics (such as O3, PM2.5, PM10, NOX) and meteorological parameters (such as wind speed, temperature, relative humidity, rain probability, and cloud cover), recorded on an hourly basis. Using this data, two classification models were developed: the first model (analysis model, ANM) employed decision tree and random forest algorithms to identify the main influencing factors affecting high O3 concentration events. The second model (prediction model, PRM) was designed to predict the likelihood of O3 advisory for the following day. Through the application of ANM, the main influencing factors affecting high O3 concentration were identified, with PM2.5, PM10, and temperature emerging as significant variables affecting O3 advisory. And both decision tree and random forest models have demonstrated strong classification performance. These results indicate that the models effectively classified the data into category 0 (no O3 advisory) and category 1 (O3 advisory). Additionally, a second classification model (PRM) was developed to predict the likelihood of O3 advisory in Seoul for the following day. This model utilized seven independent variables: temperature, relative humidity, rain probability, cloud cover, and forecasted air quality levels (PM2.5, PM10, O3). Overall, these findings suggest that PRM is a viable tool for predicting next-day O3 advisory. In this study, the application of the proposed classification model methodology based on real-time air quality and meteorological data for a given region is expected to quantitatively explain the performance of PRM and be usefully utilized in reducing O3 exposure for sensitive and vulnerable populations.

Original languageEnglish
Pages (from-to)558-571
Number of pages14
JournalJournal of Korean Society for Atmospheric Environment
Volume40
Issue number5
DOIs
StatePublished - Oct 2024

Keywords

  • Classification model
  • Decision tree
  • O
  • O advisory
  • Random forest

Fingerprint

Dive into the research topics of 'Proposed Utilization of Classification Models for High Ozone Alert Communication in Seoul'. Together they form a unique fingerprint.

Cite this