Robust Landing Stabilization of Humanoid Robot on Uneven Terrain via Admittance Control and Heel Strike Motion

Joonhee Jo, Gyunghoon Park, Yonghwan Oh

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

This paper addresses robust landing stabilization in humanoid locomotion on uneven terrain. The core idea is to find a configuration of the robot that results in small impulsive force when an unexpected obstacle is encountered, and to adjust post-contact reference for swing foot with which the pose of the foot is stabilized on the obstacle. This can be achieved by walking with heel strike motion (validated by the impact map analysis) and by employing hybrid admittance control combining the admittance control with reset of post-contact reference, embedded into the momentum-based whole-body control framework. The validity of the proposed algorithm is verified by simulation with a physics engine.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2994-3000
Number of pages7
ISBN (Electronic)9781728190778
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Duration: 30 May 20215 Jun 2021

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2021-May
ISSN (Print)1050-4729

Conference

Conference2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Country/TerritoryChina
CityXi'an
Period30/05/215/06/21

Fingerprint

Dive into the research topics of 'Robust Landing Stabilization of Humanoid Robot on Uneven Terrain via Admittance Control and Heel Strike Motion'. Together they form a unique fingerprint.

Cite this