Role of surface friction on shallow nonprecipitating convection

Seung Bu Park, Steven Böing, Pierre Gentine

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The role of surface friction on shallow nonprecipitating convection is investigated using a series of large-eddy simulations with varying surface friction velocity and with a cloud identification algorithm. As surface friction intensifies, convective rolls dominate over convective cells and secondary overturning circulation becomes stronger in the subcloud layer, thus transporting more moisture upward and more heat downward between the subcloud and cloud layers. Identifying individual clouds, using the identification algorithm based on a three-dimensional topological analysis, reveals that intensified surface friction increases the number of clouds and the degree of tilting in the downstream direction. Highly intensified surface friction increases wind shear across the cloud base and induces cloud tilting, which leads to a vertically parabolic profile of liquid water mixing ratio instead of the classical two-layer structure (conditionally unstable and trade inversion layers). Furthermore, cloud tilting induces more cloud cover and more cloud mass flux much above the cloud base (e.g., 0.8 < z < 1.2 km), but less cloud cover and less cloud mass flux in the upper cloud layer (e.g., z > 1.2 km) because of increased lateral entrainment rate. Similarly, profiles of directly measured entrainment and detrainment rates show that detrainment in the lower cloud layer becomes smaller with stronger surface friction.

Original languageEnglish
Pages (from-to)163-178
Number of pages16
JournalJournals of the Atmospheric Sciences
Volume75
Issue number1
DOIs
StatePublished - 1 Jan 2018

Keywords

  • Cloud resolving models
  • Cloud tracking/cloud motion winds
  • Convective clouds
  • Cumulus clouds
  • Large eddy simulations
  • Mass fluxes/transport

Fingerprint

Dive into the research topics of 'Role of surface friction on shallow nonprecipitating convection'. Together they form a unique fingerprint.

Cite this