Role of surface heat fluxes underneath cold pools

Pierre Gentine, Alix Garelli, Seung Bu Park, Ji Nie, Giuseppe Torri, Zhiming Kuang

Research output: Contribution to journalArticlepeer-review

56 Scopus citations


The role of surface heat fluxes underneath cold pools is investigated using cloud-resolving simulations with either interactive or horizontally homogenous surface heat fluxes over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive heat fluxes induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass flux and lateral entrainment are modified. Over the land surface, the heat fluxes underneath cold pools drastically impact the cold pool characteristics with more numerous and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive fluxes also modify the updraft mass flux and reduce convective organization. These results emphasize the importance of interactive surface fluxes instead of prescribed flux boundary conditions, as well as the formulation of surface heat fluxes, when studying convection.

Original languageEnglish
Pages (from-to)874-883
Number of pages10
JournalGeophysical Research Letters
Issue number2
StatePublished - 28 Jan 2016


  • cold pools
  • convection
  • entrainment
  • mass flux
  • surface fluxes


Dive into the research topics of 'Role of surface heat fluxes underneath cold pools'. Together they form a unique fingerprint.

Cite this