Selective CO oxidation in the hydrogen stream over Ru/Al@Al2O3 catalysts

Il Ji Rah, Tae Wook Kim, Jieun Kim, Doohwan Lee, Eun Duck Park

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

The Al@γ-Al2O3 core-shell microstructures prepared from aluminum particles by hydrothermal surface oxidation were superior to the conventional alumina support owing to the facile heat flux through the metal-ceramic composite structures. The Ru catalysts supported on Al@γ-Al2O3 were used for the preferential CO oxidation (PROX) reaction, which is a highly exothermic reaction requiring high heat flux. For comparison, commercially available α-Al2O3 and γ-Al2O3 were also used as catalyst supports. The catalysts were characterized by N2-physisorption, X-ray diffraction, CO chemisorption, transmission electron microscopy (TEM), temperature-programmed desorption of ethanol (ethanol-TPD) and ammonia (NH3-TPD), and temperature-programmed oxidation (TPO). The Ru/α-Al2O3 catalyst with the lowest Ru dispersion showed the best PROX performance among the tested catalysts in the absence of CO2 and H2O. Even though Ru/Al@γ-Al2O3 and Ru/γ-Al2O3 had similar Ru dispersions, the former catalyst exhibited a much better PROX performance than the latter. This could be explained by the fact that the Ru metal deposited on Al@γ-Al2O3 was more resistant to surface oxidation as compared to that on γ-Al2O3, based on the TPO results. A lower desorption temperature of ethanol was observed over Al@γ-Al2O3 than over γ-Al2O3 during ethanol-TPD experiments, even though both supports had similar amounts of acid sites, as determined by NH3-TPD. Among the tested catalysts, Ru/Al@γ-Al2O3 also showed the best PROX performance in the presence of CO2 and H2O. A further enhancement in the PROX performance was achieved by increasing the Ru metal particle size from 1.4 to 2.6 nm by pretreating the Ru/Al@γ-Al2O3 catalyst with 1 mol% O2 in He at 150 ℃.

Original languageEnglish
Pages (from-to)148-156
Number of pages9
JournalCatalysis Today
Volume352
DOIs
StatePublished - 1 Aug 2020

Keywords

  • Al@γ-AlO
  • Metal-ceramic composite
  • Preferential CO oxidation
  • Ru
  • Ru/alumina

Fingerprint

Dive into the research topics of 'Selective CO oxidation in the hydrogen stream over Ru/Al@Al2O3 catalysts'. Together they form a unique fingerprint.

Cite this