Abstract
Most non-fullerene acceptors (NFAs) are designed in a complex planar molecular conformation containing fused aromatic rings in high-efficiency organic solar cells (OSCs). To obtain the final molecules, however, numerous synthetic steps are necessary. In this work, a novel simple-structured NFA containing alkoxy-substituted benzothiadiazole and a rhodanine end group (BTDT2R) is designed and synthesized. We also investigate the photovoltaic properties of BTDT2R-based OSCs employing representative polymer donors (wide band gap and high-crystalline P3HT, medium band gap and semicrystalline PPDT2FBT, and narrow band gap and low-crystalline PTB7-Th) to compare the performance capabilities of fullerene acceptor-based OSCs, which are well matched with various polymer donors. OSCs based on P3HT:BTDT2R, PPDT2FBT:BTDT2R, and PTB7-Th:BTDT2R achieved efficiency as high as 5.09, 6.90, and 8.19%, respectively. Importantly, photoactive films incorporating different forms of optical and molecular ordering characteristics exhibit favorable morphologies by means of solvent vapor annealing. This work suggests that the new n-type organic semiconductor developed here is highly promising as a universal NFA that can be paired with various polymer donors with different optical and crystalline properties.
Original language | English |
---|---|
Pages (from-to) | 30098-30107 |
Number of pages | 10 |
Journal | ACS applied materials & interfaces |
Volume | 11 |
Issue number | 33 |
DOIs | |
State | Published - 21 Aug 2019 |
Keywords
- bandgap
- crystallinity
- non-fullerene acceptor
- organic solar cells
- simple chemical structure