TY - JOUR
T1 - Simple quantification method for N-nitrosamines in atmospheric particulates based on facile pretreatment and GC-MS/MS
AU - Hong, Youngmin
AU - Kim, Kyung Hwan
AU - Sang, Byoung In
AU - Kim, Hyunook
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2017
Y1 - 2017
N2 - Nine N-nitrosamines (i.e., N-nitrosomethylamine, N-nitrosodiethylamine (NDEA), N-nitrosodimethylamine (NDMA), N-nitrosodi-n-propylamine (NDPA), N-nitrosomorpholine (NMor), N-nitrosopyrrolidine (NPyr), N-nitrosopiperidine (NPip), N-nitorosodi-n-butylamine (NDBA), and N-nitrosodiphenylamine (NDPhA) in atmospheric PM2.5 collected in the fall season from an roadside site and a residential in Seoul, Korea have been analyzed using a newly developed method consisting of simple direct liquid extraction assisted by ultrasonication and subsequent quantification using a gas chromatography-triple quadrupole mass spectrometry (GC-TQMS). Excellent recovery values (92–100%) and method detection limits for the target compounds atmospheric PM samples could be achieved even without an evaporation step for sample concentration. The concentration of total N-nitrosamines in PM2.5 was ranged from 0.3 to 9.4 ng m−3 in this study; NDMA, NDEA, NDBA, NPyr, and NMor in PM2.5 were found to be the most frequently encountered compounds at the sampling sites. Since no industrial plant is located in Seoul, vehicle exhausts were considered major cause of the formation of nitrosamines in this study. The mechanisms how these compounds are formed and detected in the atmosphere are explained from the viewpoint of secondary organic aerosol. Considering the concentrations of N-nitrosamines and their associated potential health risks, a systematic monitoring of nitrosamines present in both ambient air and PM2.5 including seasonal and diurnal variations of selected sites (including potential precursor sources) should be carried out in the future. The proposed sample pretreatment method along with the analytical method will definitely help us perform the monitoring study.
AB - Nine N-nitrosamines (i.e., N-nitrosomethylamine, N-nitrosodiethylamine (NDEA), N-nitrosodimethylamine (NDMA), N-nitrosodi-n-propylamine (NDPA), N-nitrosomorpholine (NMor), N-nitrosopyrrolidine (NPyr), N-nitrosopiperidine (NPip), N-nitorosodi-n-butylamine (NDBA), and N-nitrosodiphenylamine (NDPhA) in atmospheric PM2.5 collected in the fall season from an roadside site and a residential in Seoul, Korea have been analyzed using a newly developed method consisting of simple direct liquid extraction assisted by ultrasonication and subsequent quantification using a gas chromatography-triple quadrupole mass spectrometry (GC-TQMS). Excellent recovery values (92–100%) and method detection limits for the target compounds atmospheric PM samples could be achieved even without an evaporation step for sample concentration. The concentration of total N-nitrosamines in PM2.5 was ranged from 0.3 to 9.4 ng m−3 in this study; NDMA, NDEA, NDBA, NPyr, and NMor in PM2.5 were found to be the most frequently encountered compounds at the sampling sites. Since no industrial plant is located in Seoul, vehicle exhausts were considered major cause of the formation of nitrosamines in this study. The mechanisms how these compounds are formed and detected in the atmosphere are explained from the viewpoint of secondary organic aerosol. Considering the concentrations of N-nitrosamines and their associated potential health risks, a systematic monitoring of nitrosamines present in both ambient air and PM2.5 including seasonal and diurnal variations of selected sites (including potential precursor sources) should be carried out in the future. The proposed sample pretreatment method along with the analytical method will definitely help us perform the monitoring study.
KW - Direct liquid extraction
KW - GC-TQMS
KW - N-Nitrosamines
KW - Particulate matter
KW - Secondary organic aerosols
UR - http://www.scopus.com/inward/record.url?scp=85017453968&partnerID=8YFLogxK
U2 - 10.1016/j.envpol.2017.04.017
DO - 10.1016/j.envpol.2017.04.017
M3 - Article
C2 - 28412030
AN - SCOPUS:85017453968
SN - 0269-7491
VL - 226
SP - 324
EP - 334
JO - Environmental Pollution
JF - Environmental Pollution
ER -