Simultaneous increase in seebeck coefficient and conductivity in a doped poly(alkylthiophene) blend with defined density of states

J. Sun, M. L. Yeh, B. J. Jung, B. Zhang, J. Feser, A. Majumdar, H. E. Katz

Research output: Contribution to journalArticlepeer-review

190 Scopus citations

Abstract

The Seebeck coefficient, a defining parameter for thermoelectric materials, depends on the contributions to conductivity of charge carriers at energies away from the Fermi level. Highly conductive materials tend to exhibit conductivity from carriers close to the Fermi level. In this article, we propose polymer blends in which ground state hole carriers, created by doping a minor additive component, are mainly at an orbital energy set below the hole energy of the major component of the blend. Transport, however, is expected to occur through the major component. This leads to a regime in which hole conductivity and Seebeck coefficient may be increased in parallel. While the absolute conductivity of the composite, and thus ZT, are not particularly high, this work demonstrates a route for designing thermoelectric materials in which increases in Seebeck coefficient and conductivity do not cancel each other.

Original languageEnglish
Pages (from-to)2897-2903
Number of pages7
JournalMacromolecules
Volume43
Issue number6
DOIs
StatePublished - 2010

Fingerprint

Dive into the research topics of 'Simultaneous increase in seebeck coefficient and conductivity in a doped poly(alkylthiophene) blend with defined density of states'. Together they form a unique fingerprint.

Cite this