Spectroscopic Visualization of Grain Boundaries of Monolayer Molybdenum Disulfide by Stacking Bilayers

Seki Park, Min Su Kim, Hyun Kim, Jubok Lee, Gang Hee Han, Jeil Jung, Jeongyong Kim

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Polycrystalline growth of molybdenum disulfide (MoS2) using chemical vapor deposition (CVD) methods is subject to the formation of grain boundaries (GBs), which have a large effect on the electrical and optical properties of MoS2-based optoelectronic devices. The identification of grains and GBs of CVD-grown monolayer MoS2 has traditionally required atomic resolution microscopy or nonlinear optical imaging techniques. Here, we present a simple spectroscopic method for visualizing GBs of polycrystalline monolayer MoS2 using stacked bilayers and mapping their indirect photoluminescence (PL) peak positions and Raman peak intensities. We were able to distinguish a GB between two MoS2 grains with tilt angles as small as 6° in their grain orientations and, based on the inspection of several GBs, found a simple empirical rule to predict the location of the GBs. In addition, the large number of twist angle domains traced through our facile spectroscopic mapping technique allowed us to identify a continuous evolution of the coupled structural and optical properties of bilayer MoS2 in the vicinity of the 0° and 60° commensuration angles which were explained by elastic deformation model of the MoS2 membranes.

Original languageEnglish
Pages (from-to)11042-11048
Number of pages7
JournalACS Nano
Volume9
Issue number11
DOIs
StatePublished - 24 Nov 2015

Keywords

  • grain boundary
  • indirect band gap photoluminescence
  • interlayer coupling
  • monolayer molybdenum disulfide
  • stacked bilayer

Fingerprint

Dive into the research topics of 'Spectroscopic Visualization of Grain Boundaries of Monolayer Molybdenum Disulfide by Stacking Bilayers'. Together they form a unique fingerprint.

Cite this