Abstract
In this study, we analyzed the effect of dispersant characteristics on the selective catalytic reduction (SCR) catalyst properties and de-NOx efficiency. For this, we measured the zeta potential and pH value of each dispersant, and compared the thermal properties of the dispersant through TG-DTA analysis. Also, the Py-GC/MS analysis results and the MSDS contents of the product were used to compare the components and molecular weight types of the dispersant. As a result, the higher the zeta potential, pH, and molecular weight of the dispersant, the more improved the dispersibility of the TiO2 slurry. Characteristics such as the rheology, sedimentation, and pH change, were studied to compare the dispersibility of the catalyst slurries, and the dispersion characteristics of the TiO2 slurries were confirmed by TEM. The SCR catalysts prepared varied based on the dispersant added, with the varying factor being the de-NOx efficiency between (250 to 450) °C depending on the dispersibility. The dispersant with the excellent dispersibility gave the highest efficiency of 84% or more at 250°C and 300°C, and the highest de-NOx efficiency of more than 92% at 350°C and 400°C.
Original language | English |
---|---|
Pages (from-to) | 2031-2043 |
Number of pages | 13 |
Journal | Energy and Environment |
Volume | 34 |
Issue number | 6 |
DOIs | |
State | Published - Sep 2023 |
Keywords
- Dispersibility
- SCR
- TiO
- de-NOx
- dispersant