TY - JOUR
T1 - The evaluation of the various update conditions on the performance of gravity gradient referenced navigation
AU - Lee, Jisun
AU - Kwon, Jay Hyoun
PY - 2015/12
Y1 - 2015/12
N2 - The navigation algorithm developed based on the extended Kalman filter (EKF) sometimes diverges when the linearity between the measurements and the states is not preserved. In this study, new update conditions together with two conditions from previous study for gravity gradient referenced navigation (GGRN) were deduced for the filter performance. Also, the effect of each update conditions was evaluated imposing the various magnitudes of the database (DB) and the sensor errors. In case the DB and the sensor errors were supposed to 0.1 Eo and 0.01 Eo, the navigation performance was improved in the eight trajectories by using part of gravity gradient components that independently estimate states located within trust boundary. When applying only the components showing larger variation, around 200% of improvement was found. Even the DB and sensor error were supposed to 3 Eo, six update conditions improved performance in at least seven trajectories. More than five trajectories generated better results with 5 Eo error of the DB and the sensor. Especially, two update conditions successfully control divergence, and bounded the navigation error to the 1/10 level. However, these update conditions could not be generalized for all trajectories so that it is recommended to apply update conditions at the stage of planning, or as an index of precision of GGRN when combine with various types of geophysical data and algorithm.
AB - The navigation algorithm developed based on the extended Kalman filter (EKF) sometimes diverges when the linearity between the measurements and the states is not preserved. In this study, new update conditions together with two conditions from previous study for gravity gradient referenced navigation (GGRN) were deduced for the filter performance. Also, the effect of each update conditions was evaluated imposing the various magnitudes of the database (DB) and the sensor errors. In case the DB and the sensor errors were supposed to 0.1 Eo and 0.01 Eo, the navigation performance was improved in the eight trajectories by using part of gravity gradient components that independently estimate states located within trust boundary. When applying only the components showing larger variation, around 200% of improvement was found. Even the DB and sensor error were supposed to 3 Eo, six update conditions improved performance in at least seven trajectories. More than five trajectories generated better results with 5 Eo error of the DB and the sensor. Especially, two update conditions successfully control divergence, and bounded the navigation error to the 1/10 level. However, these update conditions could not be generalized for all trajectories so that it is recommended to apply update conditions at the stage of planning, or as an index of precision of GGRN when combine with various types of geophysical data and algorithm.
KW - EKF
KW - GGRN
KW - Stabilization of the filter
KW - Update conditions
UR - http://www.scopus.com/inward/record.url?scp=84963973438&partnerID=8YFLogxK
U2 - 10.7848/ksgpc.2015.33.6.569
DO - 10.7848/ksgpc.2015.33.6.569
M3 - Article
AN - SCOPUS:84963973438
SN - 1598-4850
VL - 33
SP - 569
EP - 577
JO - Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
JF - Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
IS - 6
ER -