Abstract
This study investigated thermal treatment of red mud (RM) and its effect on phase composition, surface property, and sorption capacity exemplified by phosphate. Dehydration (∼600 °C), decomposition of carbonate minerals (700 °C–800 °C), and silicate/aluminate formation (900 °C–1000 °C) occurred upon thermal treatment of RM. Grain growth and vitrification that rendered initial morphology changes and decreased the specific surface area of RM from 26.5 to 4.1 m2/g when treated from 600 to 1000 °C, respectively. Surface acidity, i.e., intrinsic acidity constant and surface acidity density, decreased as well after thermal treatment at 600 °C due to burnouts of organics then increased upon further elevated-temperature treatment because of phase transformation. Thermal activation enhanced phosphate adsorption density (μmol/m2). Multilayer sorption aided by leached metal ions was responsible for phosphate immobilization.
Original language | English |
---|---|
Article number | 125867 |
Journal | Chemosphere |
Volume | 247 |
DOIs | |
State | Published - May 2020 |
Keywords
- Bauxite residue
- Electric double layer
- Sorption
- Surface acidity
- Surface precipitation