TY - JOUR
T1 - Thermoelectric Transport Properties of Co0.5Fe0.5Se2, Co0.5Fe0.5Te2, and Their Solid-Solution Compositions
AU - Park, Sang Jeong
AU - Kim, Seyun
AU - Park, Okmin
AU - Lee, Se Woong
AU - Kim, Sang Il
N1 - Publisher Copyright:
© The Author(s) under exclusive licence to The Korean Institute of Metals and Materials 2023.
PY - 2024/7
Y1 - 2024/7
N2 - Transition-metal chalcogenides with tunable electronic transport properties and unique crystal structures have attracted much attention as potential thermoelectric materials. In this study, the electrical, thermal, and thermoelectrical transport properties of Co0.5Fe0.5Se2, Co0.5Fe0.5Te2 and a series of solid-solution compositions (Co0.5Fe0.5(Se1−yTey)2, y = 0.25, 0.5, and 0.75) were investigated. Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 polycrystalline alloys exhibited high power factors of 1.37 and 1.53 mW/mK2 at 600 K, respectively, and their solid-solution compositions exhibited lower power factors between 0.38 and 0.81 mW/mK2. The lattice thermal conductivities of Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 were 2.87 and 1.71 W/mK at 300 K, respectively, and their solid-solution compositions exhibited lower lattice thermal conductivities between 0.96 and 1.98 W/mK. Consequently, the thermoelectric figure of merit (zT) of the Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 polycrystalline alloys was 0.16 and 0.18 at 600 K, respectively, and the zT of their solid-solution composition exhibited lower values between 0.04 and 0.09. As the solid-solution composition exhibited a lower thermoelectric performance than the Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 polycrystalline alloys, the lower thermoelectric performance was analyzed and discussed. Graphical Abstract: (Figure presented.)
AB - Transition-metal chalcogenides with tunable electronic transport properties and unique crystal structures have attracted much attention as potential thermoelectric materials. In this study, the electrical, thermal, and thermoelectrical transport properties of Co0.5Fe0.5Se2, Co0.5Fe0.5Te2 and a series of solid-solution compositions (Co0.5Fe0.5(Se1−yTey)2, y = 0.25, 0.5, and 0.75) were investigated. Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 polycrystalline alloys exhibited high power factors of 1.37 and 1.53 mW/mK2 at 600 K, respectively, and their solid-solution compositions exhibited lower power factors between 0.38 and 0.81 mW/mK2. The lattice thermal conductivities of Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 were 2.87 and 1.71 W/mK at 300 K, respectively, and their solid-solution compositions exhibited lower lattice thermal conductivities between 0.96 and 1.98 W/mK. Consequently, the thermoelectric figure of merit (zT) of the Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 polycrystalline alloys was 0.16 and 0.18 at 600 K, respectively, and the zT of their solid-solution composition exhibited lower values between 0.04 and 0.09. As the solid-solution composition exhibited a lower thermoelectric performance than the Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 polycrystalline alloys, the lower thermoelectric performance was analyzed and discussed. Graphical Abstract: (Figure presented.)
KW - CoSe
KW - CoTe
KW - FeSe
KW - FeTe
KW - Solid solution
KW - Thermoelectric
KW - Transition metal chalcogenide
UR - http://www.scopus.com/inward/record.url?scp=85171784530&partnerID=8YFLogxK
U2 - 10.1007/s13391-023-00459-8
DO - 10.1007/s13391-023-00459-8
M3 - Article
AN - SCOPUS:85171784530
SN - 1738-8090
VL - 20
SP - 432
EP - 439
JO - Electronic Materials Letters
JF - Electronic Materials Letters
IS - 4
ER -