Tracking by Associating Clips

Sanghyun Woo, Kwanyong Park, Seoung Wug Oh, In So Kweon, Joon Young Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

The tracking-by-detection paradigm today has become the dominant method for multi-object tracking and works by detecting objects in each frame and then performing data association across frames. However, its sequential frame-wise matching property fundamentally suffers from the intermediate interruptions in a video, such as object occlusions, fast camera movements, and abrupt light changes. Moreover, it typically overlooks temporal information beyond the two frames for matching. In this paper, we investigate an alternative by treating object association as clip-wise matching. Our new perspective views a single long video sequence as multiple short clips, and then the tracking is performed both within and between the clips. The benefits of this new approach are two folds. First, our method is robust to tracking error accumulation or propagation, as the video chunking allows bypassing the interrupted frames, and the short clip tracking avoids the conventional error-prone long-term track memory management. Second, the multiple frame information is aggregated during the clip-wise matching, resulting in a more accurate long-range track association than the current frame-wise matching. Given the state-of-the-art tracking-by-detection tracker, QDTrack, we showcase how the tracking performance improves with our new tracking formulation. We evaluate our proposals on two tracking benchmarks, TAO and MOT17 that have complementary characteristics and challenges each other.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2022 - 17th European Conference, Proceedings
EditorsShai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner
PublisherSpringer Science and Business Media Deutschland GmbH
Pages129-145
Number of pages17
ISBN (Print)9783031198052
DOIs
StatePublished - 2022
Event17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel
Duration: 23 Oct 202227 Oct 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13685 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference17th European Conference on Computer Vision, ECCV 2022
Country/TerritoryIsrael
CityTel Aviv
Period23/10/2227/10/22

Keywords

  • Clip-based tracking
  • Long-term video modeling

Fingerprint

Dive into the research topics of 'Tracking by Associating Clips'. Together they form a unique fingerprint.

Cite this