Abstract
Accumulation of amyloid-β (Aβ) correlates significantly with progressive cognitive deficits, a main symptom of Alzheimer's disease (AD). Although treadmill exercise reduces Aβ levels, the molecular mechanisms underlying the effects are not fully understood. We hypothesize that treadmill exercise decreases Aβ production and alleviates cognitive deficits by activating the non-amyloidogenic pathway via SIRT-1 signaling. Treadmill exercise improved cognitive deficits and alleviated neurotoxicity. Most importantly, treadmill exercise increased SIRT-1 level, which subsequently resulted in increased ADAM-10 level by down-regulation of ROCK-1 and upregulation of RARβ, ultimately facilitating the non-amyloidogenic pathway. Treadmill exercise-induced activation in SIRT-1 level also elevated PGC-1α level and reduced BACE-1 and C-99 level, resulting in inhibition of the amyloidogenic pathway. Treadmill exercise may thus inhibit Aβ production via upregulation of SIRT-1, which biases amyloid precursor protein processing toward the non-amyloidogenic pathway. This study provides novel and valuable insight into the molecular mechanisms possibly by which treadmill exercise reduces Aβ production.
Original language | English |
---|---|
Pages (from-to) | 142-152 |
Number of pages | 11 |
Journal | Experimental Neurology |
Volume | 288 |
DOIs | |
State | Published - 1 Feb 2017 |
Keywords
- Alzheimer's disease
- Amyloid-β
- Non-amyloidogenic pathway
- Sirtuin-1
- Treadmill exercise