Trigonometry in extended hyperbolic space and extended de sitter space

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

We study the hyperbolic cosine and sine laws in the extended hyperbolic space which contains hyperbolic space as a subset and is an analytic continuation of the hyperbolic space. And we also study the spherical cosine and sine laws in the extended de Sitter space which contains de Sitter space S1n as a subset and is also an analytic continuation of de Sitter space. In fact, the extended hyperbolic space and extended de Sitter space are the same space only differ by -1 multiple in the metric. Hence these two extended spaces clearly show and apparently explain that why many corresponding formulas in hyperbolic and spherical space are very similar each other. From these extended trigonometry laws, we can give a coherent and geometrically simple explanation for the various relations between the lengths and angles of hyperbolic polygons, and relations on de Sitter polygons which lie on S12, and tangent laws for various polyhedra.

Original languageEnglish
Pages (from-to)1099-1133
Number of pages35
JournalBulletin of the Korean Mathematical Society
Volume46
Issue number6
DOIs
StatePublished - 2009

Keywords

  • Analytic continuation
  • Hyperbolic space
  • Volume

Fingerprint

Dive into the research topics of 'Trigonometry in extended hyperbolic space and extended de sitter space'. Together they form a unique fingerprint.

Cite this